Skip to main content

Anant Sudarshan Publications

ACM Journal on Computing and Sustainable Societies
Abstract

Urban air pollution hotspots pose significant health risks, yet their detection and analysis remain limited by the sparsity of public sensor networks. This paper addresses this challenge by combining predictive modeling and mechanistic approaches to comprehensively monitor pollution hotspots. We enhanced New Delhi’s existing sensor network with 28 low-cost sensors, collecting PM2.5 data over 30 months from May 1, 2018, to Nov 1, 2020. Applying established definitions of hotspots to this data, we found the existence of additional 189 hidden monthly hotspots in addition to confirming the 660 detected by the public network. Using predictive techniques like Space-Time Kriging, we identified monthly hotspots with 95% precision and 88% recall with 50% sensor failure rate, and with 98% precision and 95% recall with 50% missing sensors. The projections of our predictive model were further compiled into policy recommendations for public authorities. Additionally, we developed a Gaussian Plume Dispersion Model to understand the mechanistic underpinnings of hotspot formation, incorporating an emissions inventory derived from local sources. Our mechanistic model is able to explain 65% of observed transient hotspots. Our findings underscore the importance of integrating data-driven predictive models with physics-based mechanistic models for scalable and robust air pollution management in resource-constrained settings.

Quarterly Journal of Economics
Abstract

Market-based environmental regulations are seldom used in low-income countries, where pollution is highest but state capacity is often low. We collaborated with the Gujarat Pollution Control Board (GPCB) to design and experimentally evaluate the world’s first particulate-matter emissions market, which covered industrial plants in a large Indian city. There are three main findings. First, the market functioned well. Treatment plants, randomly assigned to the emissions market, traded permits to become significant net sellers or buyers. After trading, treatment plants held enough permits to cover their emissions 99% of the time, compared with just 66% compliance with standards under the command-and-control status quo. Second, treatment plants reduced pollution emissions, relative to control plants, by 20%–30%. Third, the market reduced abatement costs by an estimated 11%, holding constant emissions. This cost-savings estimate is based on plant-specific marginal cost curves that we estimate from the universe of bids to buy and sell permits in the market. The combination of pollution reductions and low costs imply that the emissions market has mortality benefits that exceed its costs by at least 25 times.

npj | Climate and Atmospheric Science
Abstract

The use of air quality monitoring networks to inform urban policies is critical especially where urban populations are exposed to unprecedented levels of air pollution. High costs, however, limit city governments’ ability to deploy reference grade air quality monitors at scale; for instance, only 33 reference grade monitors are available for the entire territory of Delhi, India, spanning 1500 sq km with 15 million residents. In this paper, we describe a high-precision spatio-temporal prediction model that can be used to derive fine-grained pollution maps. We utilize two years of data from a low-cost monitoring network of 28 custom-designed low-cost portable air quality sensors covering a dense region of Delhi. The model uses a combination of message-passing recurrent neural networks combined with conventional spatio-temporal geostatistics models to achieve high predictive accuracy in the face of high data variability and intermittent data availability from low-cost sensors (due to sensor faults, network, and power issues). Using data from reference grade monitors for validation, our spatio-temporal pollution model can make predictions within 1-hour time-windows at 9.4, 10.5, and 9.6% Mean Absolute Percentage Error (MAPE) over our low-cost monitors, reference grade monitors, and the combined monitoring network respectively. These accurate fine-grained pollution sensing maps provide a way forward to build citizen-driven low-cost monitoring systems that detect hazardous urban air quality at fine-grained granularities.

Journal of Political Economy
Abstract

Common resources may be managed with inefficient policies for the sake of equity. We study how rationing the commons shapes the efficiency and equity of resource use in the context of agricultural groundwater use in Rajasthan, India. We find that rationing binds on input use, such that farmers, despite trivial prices for water extraction, use roughly the socially optimal amount of water on average. The rationing regime is still grossly inefficient, because it misallocates water across farmers, lowering productivity. Pigouvian reform would increase agricultural surplus by 12% of household income yet fall well short of a Pareto improvement over rationing.