Understanding the Gender Division of Work across Countries

 ${\sf Cheryl\ Doss^1 \qquad Douglas\ Gollin^1 \qquad Charles\ Gottlieb^2 \qquad Markus\ Poschke^3}$

¹University of Oxford ²Un

²University of St. Gallen

³McGill University

Gender-Sensitive Economic Recovery and Resilience in Asia Conference Tokyo, 9 March 2023

This paper

- 1. How does work differ across countries?
- → New facts on gender division of market and non-market work.
- 2. Accounting framework
- ightarrow Income effects, spousal income, norms, discrimination, labor productivity ...
- 3. Study drivers of changes in hours worked
- → Cross-country and country studies (USA, TZA, IND, FRA)

1. How does work differ across countries?

Market work

- Higher in poor countries (Bick, Fuchs-Schündeln and Lagakos 2018).
- More female market work in HIC
- Less male market work in HIC (Aguiar et al. 2021)

Non-market work

- More home production in poor countries (Bridgman et al. 2018).

Know less about

- Types of non-market work: <u>care</u> and <u>domestic</u> work \rightarrow Total work.
- Gender division
- Whole country income distribution.
- \rightarrow We fill these gaps thanks to an extensive data harmonization exercise.

2. What determines choices of work and its gender division?

- Culture: Fernandez, Fogli and Olivetti (2004) and Fernandez (2013)
- Bargaining power: marriage laws Chiappori, Fortin and Lacroix (2002) & Greewood, Guner, Kocharkov & Santos (2016).
- Parenting style: Doepke and Zilibotti (2019)
- Income: labor market discrimination & occupational preferences Hsieh, Hurst, Jones and Klenow (2019), Chiplunkar and Kleineberg (2022)
- Marketization of services: Ngai & Petrongolo (2017)
- Home production: technology Greenwood, Seshadri and Yorukoglu (2005)
- → "Little to no work explores the ability of such models to account for heterogeneity in women's rights in the entire cross-section of countries." Tertilt, Doepke, Hannusch and Montenbruck (2022)

3. Accounting framework and decomposition exercise.

- Model of household allocation of work.
 - Framework that accounts for a rich set of channels.
 - Wages (own + spouse), disutilities of work, productivity of non-market work and bargaining.
- Direct and transparent identification of each parameter.
 - By gender and marital status.
 - Calibration to 30 countries.

- Use model as an accounting framework

Data

Data

We leverage two micro datasets that we built:

1. Harmonized World Time Use Survey (HWTUS)

2. Harmonized World Labour Force Survey (HWLFS)

Data: Harmonized World Time Use Survey (HWTUS)

Individual level information

- household roster
- demographic
- education
- 24 hour diary data.

Coverage

- 137 surveys from 42 countries.
- \$1,500 (TZA 2006) \$100,000 (LUX 2015)

Data sources

- MTUS and CTUR.
- Time use surveys and household surveys from NSO.

Data: Harmonized World Labour Force Survey (HWLFS)

Individual level information

- household roster
- demographic
- education
- employment status, jobs and wages

Coverage:

- 1'748 country-year surveys
- 105 countries
- \$302 (SOM 2016) \$115,000 (LUX 2020)

Data sources:

- Nests traditional data sources (IPUMS Intl., IPUMS-US historical and EU-LFS).
- Household and labour force surveys from NSO and World Bank

Data: Measurement

Activity	Type of work	Definition	ICATUS	SNA
Work		Activities that can be delegated to a third party		
	Market	Production of goods and services destined to the marketProduction of goods for own final use.	1 2	Y Y
		Activities to produce services for own final use:		
	Services Care	Domestic servicesHousehold and family members.Others (incl. volunteering and community work).	3 4 5	N N N
Education		Education and related activities.	6	
Leisure		Socializing, community participation and religious practice. Culture, leisure, mass-media and sports practices	7 8	
Self-care		Activities for self-care and maintenance (sleep, food, cleaning).	9	

Table: ICATUS activity classification - 1 digit.

Weekly hours spent on market, domestic and care work per capita

Hours on: - domestic care - domestic services - market work

Quadratic fit, shaded area marks the 95% confidence interval
Working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 18.2, services = 3, care = 485]. Minimum sample size for each activity group is 30.

Weekly hours spent on market, domestic and care work per capita

Hours on: - domestic care - domestic services - market work

Male, married working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 18.2, services = 3, care = 48.5]. Minimum sample size for each activity group is 30.

Weekly hours spent on market, domestic and care work per capita

Hours on: - domestic care - domestic services - market work

Quadratic fit, shaded area marks the 95% confidence interval
Female, married working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 182, services = 3, care = 485]. Minimum sample size for each activity group is 30.

Gender ratio of hours spent on market, domestic and care work

Work type: - domestic care - domestic services - market work

Quadratic fit, shaded area marks the 95% confidence interval

Working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 18.2, services = 3, care = 485]. Minimum sample size for each activity group is 30.

Facts on work across countries: Summary

Fact 1: U-shape pattern of women market work with country income level.

Fact 2: Hump shape of women domestic work with country income level.

Fact 3: Men in rich countries do less market than in poor countries.

Fact 4: Men in rich countries do more care and service work than in poor countries.

What determines these patterns?

Model

Model: Markets, Technology and Budget Constraints

- Two types of households: married and single.
- Three goods: market good (c_m) , domestic good/service (c_d) and care services (c_c)
- Three activities: market (L_m) , domestic (L_d) and care (L_c)
- Home technology: $y_i = z_i L_i$, where i = c, d.

Model: Preferences and budget constraints

Individual preferences:

$$u = \frac{C^{1-\sigma}}{1-\sigma} - D_m \frac{L_m^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}} - D_d \frac{L_d^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}} - D_c \frac{L_c^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}}.$$

$$C = \left[c_m^{\frac{\varepsilon - 1}{\varepsilon}} + B_d c_d^{\frac{\varepsilon - 1}{\varepsilon}} + B_c c_c^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

Utility of couples:

$$U = \lambda u^m + (1 - \lambda)u^f$$

Budget constraints of couples:

$$P(c_{m}^{m} + c_{m}^{f}) = w^{m} L_{m}^{m} + w^{f} L_{m}^{f}$$
$$c_{i}^{m} + c_{i}^{f} = z_{i} (L_{i}^{f} + L_{i}^{m}) \quad i = \{c, d\}$$

Model: Allocation

Derived individual utility:

$$u^{g} = \frac{1}{1 - \sigma} \left[c_{m}^{\frac{\varepsilon - 1}{\varepsilon}} + B_{d} \left(z_{d} L_{d}^{g} \right)^{\frac{\varepsilon - 1}{\varepsilon}} + B_{c} \left(z_{c} L_{c}^{g} \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon (1 - \sigma)}{\varepsilon - 1}} - D_{m} \frac{L_{m}^{1 + \frac{1}{\phi}}}{1 + \frac{1}{\phi}} - D_{d} \frac{L_{d}^{1 + \frac{1}{\phi}}}{1 + \frac{1}{\phi}} - D_{c} \frac{L_{c}^{1 + \frac{1}{\phi}}}{1 + \frac{1}{\phi}}.$$

- Production efficiency: $\omega_i = B_i z_i^{1-\frac{1}{\varepsilon}}$ where $i = \{c, d\}$
- Separating z_i from B_i is not feasible without observing c_i .
- Equilibrium allocation depends only on ω_i .

▶ FOCs

Model: Allocation: Within household division of work

Care/Domestic hours, men vs women

$$\frac{L_i^f}{L_i^m} = \left(\frac{D_i^m}{D_i^f} \frac{\lambda}{1 - \lambda}\right)^{\phi}$$

Market hours, men vs women

$$\frac{L_m^f}{L_m^m} = \left(\frac{w^f}{w^m} \frac{D_m^m}{D_m^f} \frac{\lambda}{1 - \lambda}\right)^{\phi}$$

Model: Allocation: Time spent across work types

Care hours vs Market hours, men vs women

$$\left(\frac{L_m^m}{L_c^m}\right)^{\frac{1}{\phi}} = \left(\frac{L_m^f}{L_c^f}\right)^{-\frac{1}{\varepsilon}} \frac{1}{\omega_c} \frac{D_c^m}{D_m^m} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_c + 1}\right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}$$

Domestic hours vs Market hours, men vs women

$$\left(\frac{L_m^m}{L_d^m}\right)^{\frac{1}{\phi}} = \left(\frac{L_m^f}{L_d^f}\right)^{-\frac{1}{\varepsilon}} \frac{1}{\omega_d} \frac{D_d^m}{D_m^m} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_d + 1}\right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}$$

Model: Allocation: Levels

Market hours worked

$$L_{m}^{f \sigma + \frac{1}{\phi}} = \frac{1}{D_{m}^{f}} (1 - \Lambda)^{-\sigma} (\Omega(\omega_{c}; \omega_{d}) \Theta_{c}^{f})^{\frac{1 - \sigma \varepsilon}{\varepsilon}} \left(\frac{w^{m} \Delta_{m} + w^{f}}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^{f}}{P}.$$

$$L_{m}^{m\sigma + \frac{1}{\phi}} = \frac{1}{D_{m}^{m}} \left(\frac{\Lambda}{\Delta_{m}} \right)^{-\sigma} (\Omega(\omega_{c}; \omega_{d}) \Theta_{c}^{f})^{\frac{1 - \sigma \varepsilon}{\varepsilon}} \left(\frac{w^{m} \Delta_{m} + w^{f}}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^{m}}{P}.$$

where Δ_i are gender ratios of time worked in activity i.

Determinants:

- Own + spousal wage
- Disutility of market work
- Consumption level $\Omega(\omega_c, \omega_d)$
- Share of consumption (1Λ)

Calibration

Calibration:

- Data
 - Use HWLFS to measure L_m^g , w^g
 - Use HWTUS to measure L_d^g , L_c^g
- Model
 - 9 parameters $(\omega_c, \omega_d, D_m^g, D_d^g, D_c^g, \lambda)$
 - Allocation consists of 6 equations.
- Impose structure on D.
- Ass 1: Common disutility of care work $(D_c^f = D_c^m)$
- Ass 2: Assume $D_c^m = D^m$
- Ass 3: Assume $\frac{D_d^f + D_d^m}{2} = D^m$
 - ▶ Step 1
 ▶ Step 2
 ▶ Step 3
 ▶ Step 4

Calibration:

- Set parameters $\varepsilon=2$ as in Aguiar, Hurst and Karabarbounis (2012)
- External calibration of elasticity (σ, ϕ) .
 - Choose σ such that D^m is constant in the US time series (1975-2018).
 - We get σ =1.28, ϕ =0.6.
 - In line with Blundell, Pistaferri and Saporta-Eksten (2016).
- Internal calibration parameters

 - 2. US time series (1975-2013) (1975-2013)

Results

Results

- Fact 1: U-shape pattern of women market work with country income level.
 - 1. Drop in women market hours L_m^f
 - 2. Increase in women market hours L_m^f
- Fact 2: Hump shape of women domestic work with country income level.
 - 1. Increase in women domestic hours L_d^f
 - 2. Decrease in women domestic hours L_d^f
- Fact 3: Men in rich countries do less market work than in poor countries.
- Fact 4: Men in rich countries do more care and service work than in poor countries.

▶ Results: summary

Understanding fact 1.1 : \downarrow Market hours of married female L_m^f

- Data: 20 pp drop
- Own wage : IE < SE
- Offset by income effect from spousal wage.
- Disutility of market work.

Understanding fact 1.2 : \uparrow Market hours of married female L_m^f

Understanding fact 2.1 : \uparrow Domestic hours of married female L_d^f

- Data: 22 pp increase
- Higher female wages reduce female domestic hours by 12%
- Higher productive efficiency of domestic services (ω_d)
- Greater disutility of female domestic work (D_d^f)

Understanding fact 2.2 : \downarrow Domestic hours of married female L_d^f

Data: 23pp drop.

- Higher bargaining power (λ)
- Decrease in rel. disutility of domestic work D_d^f
- Offset by increase productive efficiency of domestic work (ω_d)

Understanding fact 3: \downarrow Market hours of married males L_m^m

- Data: 18pp drop.
- Own wage (IE>SE)
- Offsetting effect due to loss in bargaining power (λ)
- Increase in productivity of domestic services (ω_d) enhances reallocation of time away from market.

Understanding fact 4.1: \uparrow Domestic hours of married males L_d^m

- Data: 250pp increase.
- Increase in productive efficiency of domestic work (ω_d) .
- Lower disutility of domestic work for men.
- Contribution of higher wage.

Understanding fact 4.2 : \uparrow Care hours of married males L_c^m

- Data: 50pp increase
- Household productivity for care work.
- Change in wages

Results: Summary

- Fact 1: U-shape pattern of women market work with country income level.
 - 1. Drop in women market hours $L_m^f \leftarrow$ Spousal wage
 - 2. Increase in women market hours $L_m^f \leftarrow \textbf{Disutility of women market work}$
- Fact 2: Hump-shape pattern of women domestic work with country income level.
 - 1. Increase in women domestic hours $L_d^f \leftarrow \mathbf{Productivity}$ of domestic services
 - 2. Decrease in women domestic hours $\check{L}_d^f \leftarrow \mathbf{Bargaining}$ power
- Fact 3: Men in rich countries do less market work than in poor countries.
 - 1. Decrease in male market hours $L_m^m \leftarrow$ Income effects (own + spouse).
- Fact 4: Men in rich countries do more domestic and care work than in poor countries.
 - 1. Increase in male domestic hours $L_d^m \leftarrow \textbf{Productivity of domestic work}$
 - 2. Increase in male care hours $L_c^m \leftarrow \mathbf{Productivity}$ of care work

Conclusion

- New facts on gender division of work across countries
- Develop of model of household labor supply
- Use model to disentangle channels that drive these patterns.
- Future work:
 - Correlate estimated parameters with value surveys/religion/laws.
 - Country experiences (TZA, IND, KHM, PSE, FRA)

Appendix

US parameter estimates: utility weights

Care hours, male vs female:

$$\left(\frac{L_c^f}{L_c^m}\right)^{\frac{1}{\phi}} = \frac{\lambda}{1-\lambda}$$

$$\frac{1975}{L_c^f/L_c^m} = \frac{2}{1.76} = \frac{1.66}{1.56}$$

$$\frac{1.56}{\lambda} = \frac{1.76}{0.85} = \frac{1.76}{0.85} = \frac{1.76}{0.85} = \frac{1.76}{0.75}$$

US parameter estimates: relative disutility of domestic services

Domestic service hours, male vs female:

$$\left(\frac{L_d^f}{L_d^m}\right)^{\frac{1}{\phi}} = \frac{D_d^m}{D_d^f} \frac{\lambda}{(1-\lambda)}$$

	1975	2003	2008	2013
L_c^f/L_c^m	2	1.76	1.66	1.56
λ	0.85	0.80	0.78	0.75
$\frac{L_d^f/L_d^m}{D_d^f/D_d^m}$	2.54	1.58	1.57	1.54
D_d^f/D_d^m	0.55	1.29	1.15	1.04

▶ Back

US parameter estimates: relative disutility of market work

Market hours, male vs female:

$$\frac{C^f}{C^m} = \frac{\lambda}{1 - \lambda} \left(\frac{L_m^m}{L_m^f}\right)^{\frac{1}{\phi}} \frac{w^f h^f}{w^m h^m}$$

$$\frac{1975}{\lambda} = \frac{2003}{0.85} = \frac{2008}{0.78} = \frac{2013}{0.75}$$

$$\frac{L_c^f/L_c^m}{\lambda} = \frac{2}{0.85} = \frac{1.76}{0.80} = \frac{1.66}{0.78} = \frac{1.56}{0.75}$$

$$\frac{L_d^f/L_d^m}{D_d^f/D_d^m} = \frac{2.54}{0.55} = \frac{1.58}{1.29} = \frac{1.57}{1.15} = \frac{1.54}{1.04}$$

$$\frac{w_m^f/w_m^m}{w_m^f/w_m^m} = \frac{0.54}{0.64} = \frac{0.64}{0.65} = \frac{0.68}{0.66}$$

$$\frac{L_m^f/L_m^m}{C^f/C^m} = \frac{0.46}{0.92} = \frac{0.63}{0.828} = \frac{0.79}{0.79} = \frac{0.93}{0.93}$$

Cross-country parameter estimates: Utility weight λ

Drop in $\frac{L_c^f}{L_c^m}$ across countries \Rightarrow lower λ .

Cross-country parameter estimates: Rel. disutility of domestic work D_c^f/D_c^m

Gender gap of disutility of care work D_{c}^{f}/D_{c}^{m}

Greater gap for $\frac{L_d^f}{L_d^m}$ \Rightarrow higher δ .

Cross-country parameter estimates: Rel. disutility of market work κ

Gender gap of disutility of market work $\boldsymbol{\kappa}$

Greater κ in LICs needed to explain market work patterns (given wages and care work).

Cross-country parameter estimates: Valuation/productivity of domestic services ω_d

Greater valuation/productivity of domestic services required to explain higher home hours in HICs, despite higher wages.

Cross-country parameter estimates: Valuation/productivity of care services ω_c

Greater valuation/productivity of care services required to explain higher home hours in HICs, despite higher wages.

Weekly hours spent on market, domestic and care work per capita Males

Hours on: - domestic care - domestic services - market work

Quadratic fit, shaded area marks the 95% confidence interval Male working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 182, services = 3, care = 485]. Minimum sample size for each activity group is 30.

Weekly hours spent on market, domestic and care work per capita Females

Hours per week

Hours on: - domestic care - domestic services - market work

Quadratic fit, shaded area marks the 85% contidence interval
Female working age population, Activity groups are aggregated based on the ICATUS 2016 one—don't codes [market = 18.2, services = 3, care = 48.5]. Minimum sample size for each activity group is 30.

Appendix model: : Consumption allocation

Ratio of consumption FOCs across genders:

$$\frac{\lambda}{1-\lambda} \left(\frac{c^m}{c^f}\right)^{\frac{1-\sigma\varepsilon}{\varepsilon}} \left(\frac{c_m^m}{c_m^f}\right)^{-\frac{1}{\varepsilon}} = 1$$

$$\frac{\lambda}{1-\lambda} \left(\frac{c^m}{c^f}\right)^{\frac{1-\sigma\varepsilon}{\varepsilon}} \left(\frac{c_i^m}{c_i^f}\right)^{-\frac{1}{\varepsilon}} = 1$$

This implies that

$$\frac{c_m^m}{c_m^f} = \frac{c_i^m}{c_i^f}.$$

Married individuals consume the same share of each good. Let $\Lambda \equiv c_m^m/c_m$, such that: $c_c^m = \Lambda c_c$ and $c_d^m = \Lambda c_d$.

▶ Back

Appendix model: First order conditions

Consumption:

$$c_m^g: \lambda^g c^g \frac{1-\sigma\varepsilon}{\varepsilon} c_m^g - \frac{1}{\varepsilon} = \mu_m P$$

 $c_i^g: B_i \lambda^g c^g \frac{1-\sigma\varepsilon}{\varepsilon} c_i^g - \frac{1}{\varepsilon} = \mu_i$

Hours worked:

$$L_m^g: D_m^g \lambda^g L_m^g^{\frac{1}{\phi}} = w^g \mu_m$$

$$L_i^g: D_i^g \lambda^g L_i^g^{\frac{1}{\phi}} = z_i \mu_i$$

where
$$g = \{m, f\}$$
, $\lambda^m = \lambda$, $\lambda^f = 1 - \lambda$ and $i = \{c, d\}$

Step 1: Assume common disutility of care work $(D_c^f = D_c^m)$

$$\frac{L_c^f}{L_c^m} = \left(\frac{D_c^m}{D_c^f} \frac{\lambda}{1 - \lambda}\right)^{\phi} \quad \rightarrow \quad \lambda = \frac{\left(\frac{L_c^f}{L_c^m}\right)^{1/\phi}}{1 + \left(\frac{L_c^f}{L_c^m}\right)^{1/\phi}}$$

 \rightarrow Gender ratio of L_c reveals utility weights λ .

→ Back

Step 2:

$$\frac{L_d^f}{L_d^m} = \left(\frac{D_d^m}{D_d^f} \frac{\lambda}{1 - \lambda}\right)^{\phi} \quad \rightarrow \quad \frac{D_d^m}{D_d^f} = \left(\frac{L_c^m}{L_c^f} \frac{L_d^f}{L_d^m}\right)^{\frac{1}{\phi}} \equiv \frac{1}{\delta}$$

- \rightarrow Ratio of L_d reveals gender gap of disutility of domestic work δ .
- → Member who does less domestic relative to care work has a higher disutility.

→ Back

Step 3: Use FOCs for market work to get relative disutilities from market work:

$$\kappa \equiv \frac{D_m^f}{D_m^m} = \left(\frac{L_c^f}{L_c^m} \frac{L_m^m}{L_c^f}\right)^{\frac{1}{\phi}} \frac{w^f}{w^m}.$$

ightarrow Gender wage gap pins down the gender gap of disutility of market work.

Step 4: Assume
$$D_c^m = C^m$$
 and $\frac{D_d^f + D_d^m}{2} = C^m$

$$\omega_{c} = \left(\frac{L_{m}^{m}}{L_{c}^{m}}\right)^{-\frac{1}{\phi}} \left(\frac{L_{m}^{f}}{L_{c}^{f}}\right)^{-\frac{1}{\varepsilon}} \left(\frac{1}{P} \frac{w^{m} \Delta_{m} + w^{f}}{\Delta_{c} + 1}\right)^{-\frac{1}{\varepsilon}} \frac{w^{m}}{P}$$

$$\omega_{d} = \left(\frac{L_{m}^{m}}{L_{d}^{m}}\right)^{-\frac{1}{\phi}} \left(\frac{L_{m}^{f}}{L_{d}^{f}}\right)^{-\frac{1}{\varepsilon}} \frac{2}{1 + \delta} \left(\frac{1}{P} \frac{w^{m} \Delta_{m} + w^{f}}{\Delta_{d} + 1}\right)^{-\frac{1}{\varepsilon}} \frac{w^{m}}{P}$$

where $\Delta_m, \Delta_d, \Delta_c$ are gender ratios of work time, and $\frac{D_m^m}{C^m} = \frac{2}{1+\delta}$

Step 5: Level equation for market hours reveals C^m :

$$C^{m} = L_{m}^{m-\frac{1}{\phi}} (\Lambda \Omega(\omega_{d}, \omega_{c}) L_{c}^{f})^{\frac{1-\sigma\varepsilon}{\varepsilon}} \left(\Lambda L_{m}^{f} \frac{(w^{m} \Delta_{m} + w^{f})}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^{m}}{P}$$

