Understanding the Gender Division of Work across Countries

Cheryl Doss\(^1\) Douglas Gollin\(^1\) Charles Gottlieb\(^2\) Markus Poschke\(^3\)

\(^1\)University of Oxford \(^2\)University of St. Gallen \(^3\)McGill University

Gender-Sensitive Economic Recovery and Resilience in Asia Conference
Tokyo, 9 March 2023
This paper

1. How does work differ across countries?
 → New facts on gender division of market and non-market work.

2. Accounting framework
 → Income effects, spousal income, norms, discrimination, labor productivity ...

3. Study drivers of changes in hours worked
 → Cross-country and country studies (USA, TZA, IND, FRA)
1. How does work differ across countries?

Market work
- Higher in poor countries (Bick, Fuchs-Schündeln and Lagakos 2018).
- More female market work in HIC
- Less male market work in HIC (Aguiar et al. 2021)

Non-market work
- More home production in poor countries (Bridgman et al. 2018).

Know less about
- Types of non-market work: care and domestic work → Total work.
- Gender division
- Whole country income distribution.

→ We fill these gaps thanks to an extensive data harmonization exercise.
2. What determines choices of work and its gender division?

- **Culture:** Fernandez, Fogli and Olivetti (2004) and Fernandez (2013)

- **Bargaining power:** marriage laws - Chiappori, Fortin and Lacroix (2002) & Greewood, Guner, Kocharkov & Santos (2016).

- **Parenting style:** Doepke and Zilibotti (2019)

- **Income:** labor market discrimination & occupational preferences - Hsieh, Hurst, Jones and Klenow (2019), Chiplunkar and Kleineberg (2022)

- **Marketization of services:** Ngai & Petrongolo (2017)

- **Home production:** technology - Greenwood, Seshadri and Yorukoglu (2005)

→ "Little to no work explores the ability of such models to account for heterogeneity in women’s rights in the entire cross-section of countries.” Tertilt, Doepke, Hannusch and Montenbruck (2022)
3. Accounting framework and decomposition exercise.

- Model of **household allocation of work**.
 - Framework that accounts for a rich set of channels.
 - Wages (own + spouse), disutilities of work, productivity of non-market work and bargaining.

- Direct and transparent identification of each parameter.
 - By gender and marital status.
 - Calibration to 30 countries.

- Use model as an **accounting framework**
Data
Data

We leverage two micro datasets that we built:

1. Harmonized World Time Use Survey (HWTUS)

2. Harmonized World Labour Force Survey (HWLFS)
Data: Harmonized World Time Use Survey (HWTUS)

Individual level information
- household roster
- demographic
- education
- 24 hour diary data.

Coverage
- 137 surveys from 42 countries.
- $1,500 (TZA 2006) - $100,000 (LUX 2015)

Data sources
- MTUS and CTUR.
- Time use surveys and household surveys from NSO.
Data: Harmonized World Labour Force Survey (HWLFS)

Individual level information
- household roster
- demographic
- education
- employment status, jobs and wages

Coverage:
- 1’748 country-year surveys
- 105 countries
- $302 (SOM 2016) - $115,000 (LUX 2020)

Data sources:
- Nests traditional data sources (IPUMS Intl., IPUMS-US historical and EU-LFS).
- Household and labour force surveys from NSO and World Bank
Data: Measurement

<table>
<thead>
<tr>
<th>Activity</th>
<th>Type of work</th>
<th>Definition</th>
<th>ICATUS</th>
<th>SNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td></td>
<td>Activities that can be delegated to a third party</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td></td>
<td>- Production of goods and services destined to the market</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Production of goods for own final use.</td>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td>Activities to produce services for own final use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Care</td>
<td></td>
<td>- Domestic services</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Household and family members.</td>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Others (incl. volunteering and community work).</td>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td>Education and related activities.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Leisure</td>
<td></td>
<td>Socializing, community participation and religious practice.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culture, leisure, mass-media and sports practices</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Self-care</td>
<td></td>
<td>Activities for self-care and maintenance (sleep, food, cleaning).</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Table: ICATUS activity classification - 1 digit.
Weekly hours spent on market, domestic and care work per capita

Working age population

Quadratic fit, shaded area marks the 95% confidence interval

Working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1 & 2, services = 3, care = 4 & 5]. Minimum sample size for each activity group is 30.
Weekly hours spent on market, domestic and care work per capita

Married males

Hours on:
- domestic care
- domestic services
- market work

Male, married working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1&2, services = 3, care = 4&5]. Minimum sample size for each activity group is 30.
All women

Weekly hours spent on market, domestic and care work per capita

Married females

Female, married working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1&2, services = 3, care = 4&5]. Minimum sample size for each activity group is 30.

Quadratic fit, shaded area marks the 95% confidence interval

GDP per capita (PPP)

Hours per week

Hours on: red domestic care blue domestic services green market work

Female, married working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1&2, services = 3, care = 4&5]. Minimum sample size for each activity group is 30.
Gender ratio of hours spent on market, domestic and care work

Working age population

GDP per capita (PPP)

Work type:
- domestic care
- domestic services
- market work

Quadratic fit, shaded area marks the 95% confidence interval

Working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes (market = 1&2, services = 3, care = 4&5). Minimum sample size for each activity group is 30.
Facts on work across countries: Summary

Fact 1: U-shape pattern of women market work with country income level.

Fact 2: Hump shape of women domestic work with country income level.

Fact 3: Men in rich countries do less market than in poor countries.

Fact 4: Men in rich countries do more care and service work than in poor countries.

What determines these patterns?
Model
Model: Markets, Technology and Budget Constraints

- Two types of households: married and single.

- Three goods: market good \((c_m)\), domestic good/service \((c_d)\) and care services \((c_c)\)

- Three activities: market \((L_m)\), domestic \((L_d)\) and care \((L_c)\)

- Home technology: \(y_i = z_i L_i\), where \(i = c, d\).
Model: Preferences and budget constraints

Individual preferences:

$$u = \frac{C^{1-\sigma}}{1-\sigma} - D_m \frac{L_m^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}} - D_d \frac{L_d^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}} - D_c \frac{L_c^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}}.$$

$$C = \left[\frac{\varepsilon-1}{\varepsilon} c_m^{\varepsilon} + B_d c_d^{\varepsilon} + B_c c_c^{\varepsilon} \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Utility of couples:

$$U = \lambda u^m + (1 - \lambda) u^f$$

Budget constraints of couples:

$$P(c_m + c_f) = w^m L_m + w^f L_f$$

$$c_i^m + c_i^f = z_i (L_i^f + L_i^m) \quad i = \{c, d\}$$
Derived individual utility:

\[u^g = \frac{1}{1-\sigma} \left[\frac{c}{\varepsilon} - \frac{B_d (z_d L_d^g)^{\varepsilon-1}}{\varepsilon} + \frac{B_c (z_c L_c^g)^{\varepsilon-1}}{\varepsilon} \right]^{\frac{\varepsilon (1-\sigma)}{\varepsilon-1}} - D_m \frac{L^m}{1 + \frac{1}{\phi}} - D_d \frac{L^d}{1 + \frac{1}{\phi}} - D_c \frac{L^c}{1 + \frac{1}{\phi}}. \]

- **Production efficiency**: \(\omega_i = B_i z_i^{1-\frac{1}{\varepsilon}} \) where \(i = \{c, d\} \)
- Separating \(z_i \) from \(B_i \) is not feasible without observing \(c_i \).
- Equilibrium allocation depends only on \(\omega_i \).
Model: Allocation: Within household division of work

Care/Domestic hours, men vs women

\[
\frac{L^f_i}{L^m_i} = \left(\frac{D^m_i}{D^f_i} \frac{\lambda}{1 - \lambda} \right) \phi
\]

Market hours, men vs women

\[
\frac{L^f_m}{L^m_m} = \left(\frac{w^f}{w^m} \frac{D^m_m}{D^f_m} \frac{\lambda}{1 - \lambda} \right) \phi
\]
Model: Allocation: Time spent across work types

Care hours vs Market hours, men vs women

\[
\left(\frac{L^m_m}{L^m_c} \right)^{\frac{1}{\phi}} = \left(\frac{L^f_m}{L^f_c} \right)^{-\frac{1}{\epsilon}} \frac{1}{\omega_c D^m_m} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_c + 1} \right)^{-\frac{1}{\epsilon}} \frac{w^m}{P}
\]

Domestic hours vs Market hours, men vs women

\[
\left(\frac{L^m_m}{L^m_d} \right)^{\frac{1}{\phi}} = \left(\frac{L^f_m}{L^f_d} \right)^{-\frac{1}{\epsilon}} \frac{1}{\omega_d D^m_m} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_d + 1} \right)^{-\frac{1}{\epsilon}} \frac{w^m}{P}
\]

▶ FOCs
Model: Allocation: Levels

Market hours worked

\[L_f^{\sigma+\frac{1}{\phi}} = \frac{1}{D_m^f} (1 - \Lambda)^{-\sigma} (\Omega(\omega_c; \omega_d) \Theta_c^f)^{\frac{1-\sigma \varepsilon}{\varepsilon}} \left(\frac{w^m \Delta_m + w^f}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^f}{P}. \]

\[L_m^{\sigma+\frac{1}{\phi}} = \frac{1}{D_m^m} \left(\frac{\Lambda}{\Delta_m} \right)^{-\sigma} (\Omega(\omega_c; \omega_d) \Theta_c^f)^{\frac{1-\sigma \varepsilon}{\varepsilon}} \left(\frac{w^m \Delta_m + w^f}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}. \]

where \(\Delta_i \) are gender ratios of time worked in activity \(i \).

Determinants:

- Own + spousal wage
- Disutility of market work
- Consumption level \(\Omega(\omega_c, \omega_d) \)
- Share of consumption \((1 - \Lambda) \)
Calibration
Calibration:

- Data
 - Use HWLFS to measure L_{mg}, w^g
 - Use HWTUS to measure L_{dg}, L_{gc}

- Model
 - 9 parameters ($\omega_c, \omega_d, D^g_m, D^g_d, D^g_c, \lambda$)
 - Allocation consists of 6 equations.

- Impose structure on D.
 - Ass 1: Common disutility of care work ($D^f_c = D^m_c$)
 - Ass 2: Assume $D^m_c = D^m$
 - Ass 3: Assume $\frac{D^f_d + D^m_d}{2} = D^m$
Calibration:

- Set parameters $\varepsilon = 2$ as in Aguiar, Hurst and Karabarbounis (2012).

- External calibration of elasticity (σ, ϕ).
 - Choose σ such that D^m is constant in the US time series (1975-2018).
 - We get $\sigma=1.28$, $\phi=0.6$.
 - In line with Blundell, Pistaferri and Saporta-Eksten (2016).

- Internal calibration parameters
 1. All country years $\lambda \kappa \delta \omega_c \omega_d$
 2. US time series (1975-2013) $\lambda \kappa \delta$
Results
Results

Fact 1: U-shape pattern of women market work with country income level.
 1. Drop in women market hours L^f_m
 2. Increase in women market hours L^f_m

Fact 2: Hump shape of women domestic work with country income level.
 1. Increase in women domestic hours L^f_d
 2. Decrease in women domestic hours L^f_d

Fact 3: Men in rich countries do less market work than in poor countries.

Fact 4: Men in rich countries do more care and service work than in poor countries.
Understanding fact 1.1: ↓ Market hours of married female L_m^f

- **Data**: 20 pp drop
- **Own wage**: $IE < SE$
- **Offset by income effect from spousal wage.**
- **Disutility of market work.**
Understanding fact 1.2: \(\uparrow\) Market hours of married female \(L^f_m\)

- **Data:** 32pp increase.
- **Wages** \(\rightarrow\) small net increase in \(L^f_m\).
- **Higher bargaining power** \(\lambda\) lowers \(L^f_m\).

\[\Rightarrow\] Changes in wages and \(\lambda\) imply lower \(L^f_m\).

\[\Rightarrow\] Lower \(C^f\) explains rise in \(L^f_m\).
Understanding fact 2.1: \(\uparrow \) Domestic hours of married female \(L^f_d \)

- **Data:** 22 pp increase

- Higher female wages reduce female domestic hours by 12%

- Higher productive efficiency of domestic services \((\omega_d) \)

- Greater disutility of female domestic work \((D^f_d) \)
Understanding fact 2.2: Domestic hours of married female L^f_d

- **Data:** 23pp drop.

- Higher bargaining power (λ)

- Decrease in rel. disutility of domestic work D^f_d

- Offset by increase productive efficiency of domestic work (ω_d)
Understanding fact 3: ↓ Market hours of married males L_m^m

- **Data:** 18pp drop.
- **Own wage** (IE>SE)
- **Offsetting effect due to loss in bargaining power** (λ)
- **Increase in productivity of domestic services** (ω_d) enhances reallocation of time away from market.
Understanding fact 4.1: \uparrow Domestic hours of married males L_d^m

- **Data**: 250pp increase.

- Increase in productive efficiency of domestic work (ω_d).

- Lower disutility of domestic work for men.

- Contribution of higher wage.
Understanding fact 4.2: Care hours of married males L^m_C

- **Data:** 50pp increase
- Household productivity for care work.
- Change in wages
Results: Summary

Fact 1: U-shape pattern of women market work with country income level.
 1. Drop in women market hours $L_m^f \leftarrow$ Spousal wage
 2. Increase in women market hours $L_m^f \leftarrow$ Disutility of women market work

Fact 2: Hump-shape pattern of women domestic work with country income level.
 1. Increase in women domestic hours $L_d^f \leftarrow$ Productivity of domestic services
 2. Decrease in women domestic hours $L_d^f \leftarrow$ Bargaining power

Fact 3: Men in rich countries do less market work than in poor countries.
 1. Decrease in male market hours $L_m^m \leftarrow$ Income effects (own + spouse).

Fact 4: Men in rich countries do more domestic and care work than in poor countries.
 1. Increase in male domestic hours $L_d^m \leftarrow$ Productivity of domestic work
 2. Increase in male care hours $L_c^m \leftarrow$ Productivity of care work
Conclusion

- New facts on gender division of work across countries
- Develop of model of household labor supply
- Use model to disentangle channels that drive these patterns.
- Future work:
 - Correlate estimated parameters with value surveys/religion/laws.
 - Country experiences (TZA, IND, KHM, PSE, FRA)
Appendix
Care hours, male vs female:

\[
\left(\frac{L_c^f}{L_c^m} \right)^{\frac{1}{\phi}} = \frac{\lambda}{1 - \lambda}
\]

<table>
<thead>
<tr>
<th>Year</th>
<th>1975</th>
<th>2003</th>
<th>2008</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_c^f/L_c^m)</td>
<td>2.00</td>
<td>1.76</td>
<td>1.66</td>
<td>1.56</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.85</td>
<td>0.80</td>
<td>0.78</td>
<td>0.75</td>
</tr>
</tbody>
</table>
US parameter estimates: relative disutility of domestic services

Domestic service hours, male vs female:

\[
\left(\frac{L_d^f}{L_d^m} \right)^{\frac{1}{\phi}} = \frac{D_d^m}{D_d^f} \frac{\lambda}{(1 - \lambda)}
\]

<table>
<thead>
<tr>
<th></th>
<th>1975</th>
<th>2003</th>
<th>2008</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_c^f/L_c^m</td>
<td>2</td>
<td>1.76</td>
<td>1.66</td>
<td>1.56</td>
</tr>
<tr>
<td>λ</td>
<td>0.85</td>
<td>0.80</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>L_d^f/L_d^m</td>
<td>2.54</td>
<td>1.58</td>
<td>1.57</td>
<td>1.54</td>
</tr>
<tr>
<td>D_d^f/D_d^m</td>
<td>0.55</td>
<td>1.29</td>
<td>1.15</td>
<td>1.04</td>
</tr>
</tbody>
</table>
US parameter estimates: relative disutility of market work

Market hours, male vs female:

\[
\frac{C^f}{C^m} = \frac{\lambda}{1 - \lambda} \left(\frac{L^m_m}{L^m_f} \right)^{\frac{1}{\phi}} \frac{w^f h^f}{w^m h^m}
\]

<table>
<thead>
<tr>
<th></th>
<th>1975</th>
<th>2003</th>
<th>2008</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^f_c / L^m_c)</td>
<td>2</td>
<td>1.76</td>
<td>1.66</td>
<td>1.56</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.85</td>
<td>0.80</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>(L^f_d / L^m_d)</td>
<td>2.54</td>
<td>1.58</td>
<td>1.57</td>
<td>1.54</td>
</tr>
<tr>
<td>(D^f_d / D^m_d)</td>
<td>0.55</td>
<td>1.29</td>
<td>1.15</td>
<td>1.04</td>
</tr>
<tr>
<td>(w^f_m / w^m_m)</td>
<td>0.54</td>
<td>0.64</td>
<td>0.65</td>
<td>0.68</td>
</tr>
<tr>
<td>(L^f_m / L^m_m)</td>
<td>0.46</td>
<td>0.63</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>(C^f / C^m)</td>
<td>20.92</td>
<td>8.28</td>
<td>6.79</td>
<td>5.93</td>
</tr>
</tbody>
</table>
Cross-country parameter estimates: Utility weight λ

Drop in $\frac{L_c^f}{L_m^c}$ across countries \Rightarrow lower λ.
Cross-country parameter estimates: Rel. disutility of domestic work D_c^f / D_c^m

Gender gap of disutility of care work D_c^f / D_c^m

Greater gap for $\frac{L_d^f}{L_d^m} \Rightarrow$ higher δ.
Cross-country parameter estimates: Rel. disutility of market work κ

Greater κ in LICs needed to explain market work patterns (given wages and care work).
Cross-country parameter estimates: Valuation/productivity of domestic services ω_d

Greater valuation/productivity of domestic services required to explain higher home hours in HICs, despite higher wages.
Cross-country parameter estimates: Valuation/productivity of care services ω_c

Greater valuation/productivity of care services required to explain higher home hours in HICs, despite higher wages.
Weekly hours spent on market, domestic and care work per capita

Males

Hours per week

GDP per capita (PPP)

Hours on: red domestic care blue domestic services green market work

Quadatic fit, shaded area marks the 95% confidence interval

Male working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1&2, services = 3, care = 4&5]. Minimum sample size for each activity group is 30.
Weekly hours spent on market, domestic and care work per capita

Females

Quadratic fit, shaded area marks the 95% confidence interval

Female working age population. Activity groups are aggregated based on the ICATUS 2016 one-digit codes [market = 1&2, services = 3, care = 4&5]. Minimum sample size for each activity group is 30.
Appendix model: : Consumption allocation

Ratio of consumption FOCs across genders:

\[\frac{\lambda}{1 - \lambda} \left(\frac{c^m}{c^f} \right)^{\frac{1 - \sigma \varepsilon}{\varepsilon}} \left(\frac{c^m_m}{c^m_f} \right)^{-\frac{1}{\varepsilon}} = 1 \]

\[\frac{\lambda}{1 - \lambda} \left(\frac{c^m}{c^f} \right)^{\frac{1 - \sigma \varepsilon}{\varepsilon}} \left(\frac{c^m_i}{c^f_i} \right)^{-\frac{1}{\varepsilon}} = 1 \]

This implies that

\[\frac{c^m_m}{c^m_f} = \frac{c^m_i}{c^f_i}. \]

Married individuals consume the same share of each good. Let \(\Lambda \equiv \frac{c^m_m}{c^m}, \) such that: \(c^m_c = \Lambda c_c \) and \(c^m_d = \Lambda c_d. \)
Appendix model: First order conditions

Consumption:

\[
\begin{align*}
 c_m^g &: \quad \lambda^g c^g \frac{1-\sigma \varepsilon}{\varepsilon} c_m^g - \frac{1}{\varepsilon} = \mu_m P \\
 c_i^g &: \quad B_i \lambda^g c^g \frac{1-\sigma \varepsilon}{\varepsilon} c_i^g - \frac{1}{\varepsilon} = \mu_i
\end{align*}
\]

Hours worked:

\[
\begin{align*}
 L_m^g &: \quad D_m^g \lambda^g L_m^g \frac{1}{\phi} = w^g \mu_m \\
 L_i^g &: \quad D_i^g \lambda^g L_i^g \frac{1}{\phi} = z_i \mu_i
\end{align*}
\]

where \(g = \{m, f\} \), \(\lambda^m = \lambda \), \(\lambda^f = 1 - \lambda \) and \(i = \{c, d\} \)
Step 1: Assume common disutility of care work ($D_c^f = D_c^m$)

$$\frac{L_c^f}{L_c^m} = \left(\frac{D_c^m}{D_c^f} \cdot \frac{\lambda}{1 - \lambda} \right)^{\phi} \rightarrow \lambda = \frac{(L_c^f/L_c^m)^{1/\phi}}{1 + (L_c^f/L_c^m)^{1/\phi}}$$

→ Gender ratio of L_c reveals utility weights λ.

Back
Appendix model: Identification

Step 2:

\[\frac{L_d^f}{L_d^m} = \left(\frac{D_d^m D_f^m}{1 - \lambda} \right)^\phi \quad \rightarrow \quad \frac{D_d^m}{D_f^m} = \left(\frac{L_c^m L_d^f}{L_c^f L_d^m} \right)^\frac{1}{\phi} \equiv \frac{1}{\delta} \]

→ Ratio of \(L_d \) reveals gender gap of disutility of domestic work \(\delta \).

→ Member who does less domestic relative to care work has a higher disutility.
Appendix model: Identification

Step 3: Use FOCs for market work to get relative disutilities from market work:

\[\kappa \equiv \frac{D^f_m}{D^m_m} = \left(\frac{L^f_c L^m_m}{L^m_c L^f_m} \right)^{\frac{1}{\phi}} \frac{w^f}{w^m}. \]

→ Gender wage gap pins down the gender gap of disutility of market work.
Appendix model: Identification

Step 4: Assume $D_c^m = C^m$ and $\frac{D_f^m + D_d^m}{2} = C^m$

\[
\omega_c = \left(\frac{L_m}{L_c} \right)^{-\frac{1}{\phi}} \left(\frac{L_f}{L_c} \right)^{-\frac{1}{\varepsilon}} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_c + 1} \right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}
\]

\[
\omega_d = \left(\frac{L_m}{L_d} \right)^{-\frac{1}{\phi}} \left(\frac{L_f}{L_d} \right)^{-\frac{1}{\varepsilon}} \frac{2}{1 + \delta} \left(\frac{1}{P} \frac{w^m \Delta_m + w^f}{\Delta_d + 1} \right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}
\]

where $\Delta_m, \Delta_d, \Delta_c$ are gender ratios of work time, and $\frac{D_d^m}{C_m} = \frac{2}{1+\delta}$

Step 5: Level equation for market hours reveals C^m:

\[
C^m = L_m^{-\frac{1}{\phi}} (\Lambda \Omega (\omega_d, \omega_c) L_c^{-\frac{1-\sigma \varepsilon}{\varepsilon}}) \left(\Lambda L_m^f \frac{w^m \Delta_m + w^f}{P} \right)^{-\frac{1}{\varepsilon}} \frac{w^m}{P}
\]