
Why Did Sugarcane Growers Suddenly Adopt Existing
Technology?

C. Austin Davis∗

I investigate the role of regulation and factor prices in the rapid, widespread adoption
of mechanical harvesting technology by Brazilian sugarcane growers. I use worker- and
establishment-level data to test the effect of regulation using complementary regression dis-
continuity and difference-in-differences approaches. I find that regulation is, at best, a partial
explanation, accounting for no more than one quarter of the dramatic change in harvesting
practices. I develop a tipping-point model to show how rising wages may have played an
important role even though the change in wages was gradual and the change in harvesting
was abrupt; instrumental variables estimates imply that increasing wages alone are sufficient
to explain the adoption of green technology.

∗Yale University and American University. I received invaluable feedback from Achyuta Advharyu,
Martha Bailey, David Lam, Paul Rhode, Gaurav Khanna, Margaret Lay, Katherine Lim, Jacob Bastian,
Hoyt Bleakley, Eric Chyn, Morgan Henderson, Prachi Jain, Max Kapustin, Sean McRae, Johannes Norling,
Bryan Stuart, seminar participants in the Energy and Environmental Economics Day at the University of
Michigan, and seminar participants in the Economic Development Seminar at the University of Michigan.
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1 Introduction

In the developing world, a large fraction of the population engages in low-productivity agri-

culture (Gollin, 2010). Widely available technologies like fertilizer have the potential to

improve productivity but are not widely used (Morris et al., 2007). Following this pattern,

Brazilian sugarcane growers relied on manual harvesting as late as 2007 even though har-

vesting machines had been available for many years. But, by 2013, almost all sugarcane was

harvested mechanically.1 This paper studies how this dramatic transformation was achieved.

Recent literature has emphasized several different factors affecting technology adoption

in agriculture, from social learning to behavioral biases (Duflo et al., 2011; Conley and Udry,

2010). From interviews with various stakeholders, I identify two other factors of primary

importance in Brazilian sugarcane. The first, government regulation, is understudied in this

literature and the second, factor prices, is foundational. Manual harvesting was gradually

banned by state governments because of pollution associated with the practice. This regu-

lation coincides with the mechanization of harvesting, lending credence to the government’s

claim that the regulation caused growers to adopt mechanical harvesting. However, I find

that the regulation accounts for little of the change in harvesting practices. I find that a

strong labor market, where rising real wages made manual harvesting more expensive, is

sufficient to explain mechanization.

Both publicly and in interviews, state government advertises regulation as the causal

factor driving the adoption of machine harvesting in sugarcane. Between 2002 and 2014,

all of the sugarcane-growing states responded to constituent concerns about air pollution by

passing gradual bans of the straw burning associated with manual harvesting. These bans,

along with enforcement efforts, were covered in national newspapers and they coincided with

1Adoption was relatively quick in this case, especially considering that the technology was not new. It
took about 22 years for American farmers to completely adopt diesel tractors (White). Mansfield (1961)
studies the diffusion of 12 innovations of “outstanding importance” among major firms in several American
industries; the average time between initial use and complete adoption is over 18 years. As another point
of comparison, den Bulte (2000) finds that widespread consumer adoption of durable goods typically takes
7 to 14 years, depending on characteristics of the good and on the economic and demographic environment
at the time of introduction.
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the period of rapid mechanization.2 In various communications, environmental regulators in

the largest sugarcane growing state, São Paulo, took credit for mechanization.3 São Paulo’s

environmental ministry has a detailed website attesting to the success of the regulation and

Brazil’s space agency publishes satellite-based monitoring data online.4

I test the effects of regulation on harvesting practices using two highly detailed, confiden-

tial data sources that provide near universal coverage of the industry. The first data source,

known by its Portuguese-language acronym RAIS, captures detailed employment informa-

tion for all formal-sector workers in Brazil from 1998 to 2014.5 The second data source is

the 2006 Census of Agriculture. I use these data sources to conduct complementary tests of

the regulation.

Regression discontinuity estimates from the Census of Agriculture show a small effect

of regulation on harvesting practices. I take advantage of an area threshold that exempted

small growers to provide complementary evaluations of the regulation, comparing harvesting

techniques and input use between unregulated establishments just below the area threshold

to regulated establishments just above.6 If the true effect lies at the extreme of the confidence

interval, I find that regulation explains no more than a quarter of the change in harvesting

practices. Moreover, regulated farmers show no changes in input use that would be consistent

with mechanization.

The regression discontinuity estimates measure the behavior of establishments near the

area threshold; I find a similarly small effect of regulation using a difference-in-differences

approach which captures the behavior of larger growers. Specifically, I use data from RAIS to

2For reporting on passage of the law, see, e.g., Spinelli (2001); Osse (2002); Gazeta Mercantil (2002). For
coverage of enforcement efforts, see, e.g. Spinelli (2001); Samora (2006); Credendio (2008); Folha de S. Paulo
(2008); Henrique (2008); Coissi (2008); Tomazela (2016); O Globo G1 (2016).

3For example, I recently received an email from environmental regulators claiming “As a result of this
policy ... 83% of the 2013/2014 crop was harvested without burning.” Officials made similar claims during
in-person interviews.

4See http://www.ambiente.sp.gov.br/etanolverde/ and http://www.dsr.inpe.br/laf/canasat/.
5RAIS stands for Relação Anual de Informações Sociais, which roughly translates to Annual Report of

Social Information. For historical reasons, most sugarcane workers are formal.
6As of 2006, roughly 80 percent of establishments are not regulated as they fall below the 150 hectare

threshold. However, regulated establishments control about 80 percent of sugarcane area.
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estimate how changes in the stringency of the regulation across states and over time affected

changes in county-level labor intensity. Here again, if the true effect lies at the extreme of

the confidence interval, I find that regulation can account for at most one quarter of the

observed decline in labor intensities.

Besides regulation, what caused the rapid transition of harvesting techniques? My de-

tailed interviews with industry participants suggest that rising wages were an important

motivation for mechanized harvesting. Using administrative and survey data, I show that,

from 1998 to 2014, increasing labor demand from large sectors like construction helped drive

real wages up by almost 50 percent for harvest workers. However, this timing does not obvi-

ously support wages as a driver of mechanization. Wages rose continuously from 1998 while

widespread mechanization began only in 2007.

I develop a tipping-point model of grower behavior that reconciles these dynamics. For

each parcel of land, there is a threshold wage, above which a profit-maximizing grower will

harvest the parcel mechanically. This threshold can be different for each parcel, depending

on characteristics of the land. If wages are well below the threshold for a majority of

parcels, wages may increase steadily without affecting harvesting techniques. Eventually,

as wages rise, they will cross the switching thresholds of many parcels, causing widespread

mechanization.

To test wages as an explanation for mechanization, I estimate the wage elasticity of labor

demand in sugarcane using a set of instruments similar to the instrument developed by

Dube and Vargas (2013). These instruments capture shifts in county-level agricultural labor

supply. Specifically, for each of the four other crops grown in the sugarcane region, I interact

the historical county-level acreage of that crop with a measure of the crop’s international

price. As a first stage, these instruments predict county-level sugarcane wages. I estimate

the wage elasticity of labor demand by regressing the county-level quantity of labor on the

predicted wages from the first stage. The estimated elasticity is large, suggesting that the

observed increase in wages is sufficient to explain the mechanization of sugarcane harvesting.
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As countries become richer, fewer people work in an increasingly productive agricultural

sector. This relationship holds across countries and within a country over time; its ubiquity

makes it one of the fundamental facts of development (Gollin, 2010). But the nature of

this relationship remains uncertain. Do improvements to agricultural productivity stimulate

growth in other sectors? Or vice versa? What is the role of policy? Do other factors drive

change?

Brazilian sugarcane is fascinating because we observe this development process: a large

agricultural sector transitioning from a labor-intensive, low-technology production to capital-

intensive, high-technology production. I find that government regulation had an extremely

limited role, at least in this context. I provide evidence that growth in other sectors, operating

through increased labor demand, motivated sugarcane growers to adopt new technology.

These results suggest that, while agriculture is a large part of developing economies, creating

labor-market opportunities in other sectors may be an effective way to improve productivity

and induce technology adoption in agriculture.

This paper owes much to prior work but offers novel insights by disentangling government

and market forces. The research question is similar to various studies of mechanization among

farmers in the antebellum United States (David, 1966; Olmstead and Rhode, 1993, 1995).

These papers also discuss the importance of factor prices but, beyond differences in time,

location, crop and technology, mechanization was not regulated in the historical US. There

is also a deep literature on technological adoption in developing country agriculture (Foster

and Rosenzweig, 1995; Conley and Udry, 2010; Duflo et al., 2011). However, learning and

network effects are primary in these papers and, thanks to the sophistication of Brazilian

sugarcane growers and the provision of extension services, these issues are less important

here. Finally, prior work has shown that it is difficult to end polluting practices in the

developing world; both government regulation and NGO-backed technological fixes have

failed (Davis, 2008; Greenstone and Hanna, 2014). At least in this context, reductions to

pollution were achieved through development itself, as embodied by higher wages for some
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of Brazil’s poorest workers.

2 Evaluating the Regulation

2.1 Where is Sugarcane Grown?

Although sugarcane is grown in two separate regions of the country, I focus on a group of

six contiguous states in South-Central Brazil. These states, which I refer to as the “study

region,” account for about 80 percent of Brazil’s output and experienced the changes in

harvesting practices that motivate this paper.7 By contrast, the smaller, two-state sugarcane

growing region in the Northeast has long used a more rudimentary form of mechanized

harvesting due to its history and ecology.8 Figure 1 is a map of Brazil that indicates the

study region.

The study region is home to about half of Brazil’s 200 million inhabitants and is a

major producer of sugarcane, coffee, oranges, soybeans, and maize. From 2006–2010, the

study region accounted for 32 percent of world sugarcane production, 21 percent of world

coffee production, 23 percent of world orange production, and 4 percent of world maize

production.9 According to household survey data, each crop employs between 0.5 and 2.5

million workers.10

7The study region accounted for 80 percent of total sugarcane tonnage between 1990 and 2010, according
to the Brazilian Census Bureau’s Produção Agŕıcola Municipal (PAM) data.

8The six states in the study region are Goiás, Minas Gerais, Paraná, Mato Grosso do Sul, Rio de Janeiro,
São Paulo. The two other sugarcane-producing states are Pernambuco and Alagoas, both located in the
northeast region. Pernambuco and Alagoas do not have the optimal soil and climate for growing sugarcane
and, according to anecdotal reports, the otherwise unprofitable industry endures thanks to subsidies from
the state government.

9Brazilian output from PAM. World output from FAO.
10Calculated from PNAD.
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Figure 1: Major sugarcane producing states and the study region

2.2 Background on Regulation

Sugarcane fields are burned in preparation for manual harvesting but not mechanical har-

vesting. The resulting pollution motivated state governments to restrict pre-harvest burn-

ing, effectively mandating mechanization. By eliminating pests and extra vegetative matter,

burning allows harvest workers to move more quickly through the fields, approximately

tripling their productivity. Following constituent complaints about salient pollution and

health concerns, the state of São Paulo passed a gradual ban of pre-harvest burning in 2002.

Under the regulations, property owners are permitted to burn only a fraction of each prop-

erty.11 In 2002, owners were permitted to burn 80 percent of each property. The regulation

11The regulation applied to each property as listed in the local property registry.
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scheduled future reductions to this fraction: 70 percent in 2006, 50 percent in 2011, 20 per-

cent in 2016, and 0 percent in 2021. This regulation became more strict in 2007, advancing

all target reductions, with the complete cessation of burning required by 2014.12 Between

2008 and 2014, the five neighboring states passed similarly structured regulation.

The regulations included meaningful incentives to change grower behavior. Violations

of the São Paulo regulation could be punished by large fines. The regulation demands that

growers pay a fine for each hectare burned in excess of their allowed fraction which, in 2002,

amounted to 13 percent of average per-hectare revenue. The fine was revised upward every

year, roughly tracking inflation. Additionally, failure to comply with burning restrictions

jeopardized mandatory state environmental licenses. Enforcement strategies vary across

the other states. Some impose large fines and threaten jail time while others instead offer

incentives for compliance.

Anecdotal evidence suggests that the regulations were salient and enforced. National

media publicized the passage of the regulations themselves while also documenting enforce-

ment efforts. The São Paulo government partnered with the Brazilian space agency INPE

to monitor harvesting practices via satellite images; this technique has been used to identify

and fine violators. Citizens and journalists also reported violations of the law. Small and

large growers have received fines throughout the years, according to newspaper reports. In

these cases, amounts ranged from $3,000 for a small grower to over $1 million for a large

grower.

Regulators claim these regulations were successful in changing harvesting practices while

sugarcane growers use compliance to advertise their environmental stewardship. In verbal

and written communications, environmental officials in São Paulo attribute mechanization to

the regulation. The state of São Paulo maintains a website about the regulation which makes

a number of claims, including: “with [regulation], all the mechanizeable area will be harvested

12Technically, the 2007 revision to the law was a voluntary agreement between sugarcane growers and the
environmental regulator. The environmental regulator held leverage over sugarcane growers in the form of
environmental licensing, other regulations, and lawmakers’ threats of stricter legislation. The two parties
agreed to more aggressive restrictions on burning while avoiding an uncertain and costly legislative process.
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... without burning,”13 that the regulation avoided millions of tons of pollutants,14 and that

the regulation quadrupled the number of harvesting machines in the state.15 The Brazilian

sugarcane industry’s English-language website advertises sustainable practices, writing that

“[m]echanization already exceeds 90 percent of the harvest in São Paulo, Brazil’s top cane-

producing state. It will be the only means of harvesting in São Paulo by 2017, thanks to

[regulation].”16

Two features of the regulations allow me to evaluate these claims. First, the regulation in

São Paulo was much less stringent for growers with less than 150 hectares. I use this variation

to evaluate the São Paulo regulation via regression discontinuity. Second, the stringency of

regulation varies across states and over time, allowing me to evaluate the regulation in a

difference-in-differences framework.

2.3 Regression Discontinuity Evidence

Taking advantage of a size threshold built into the regulation, I estimate the effect of the

regulation on harvesting practices via regression discontinuity.

2.3.1 Measuring Size and Harvesting Practices

The 2006 Census of Agriculture is a rich source with which to evaluate the regulation because

the data are disaggregated, include a great breadth of information, and offer near-universal

coverage. The Census of Agriculture records a variety of information about every agricul-

tural establishment in Brazil, including their location, size, the crops grown, and harvesting

technique. Thus, a researcher can identify regulated growers and study a range of relevant

outcomes. The Brazilian Census Bureau endeavors to survey every agricultural establish-

ment in the country. Finally, since these data describe each agricultural establishment, the

13http://www.ambiente.sp.gov.br/etanolverde/protocolo-agroambiental/ganhos-ambientais/
14http://www.ambiente.sp.gov.br/etanolverde/files/2016/06/Etanol-Verde-Relatorio-Safra-15-16.

pdf.
15Ibid.
16http://sugarcane.org/sustainability/best-practices
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unit of observation corresponds to the decision-making unit.17

The primary outcome in this analysis is an indicator variable for harvesting practices

that should respond discontinuously to the regulation. Specifically, the primary outcome

assumes a value of one if the establishment used manual harvesting only and zero if the

establishment used any mechanical harvesting. Recall that the regulation required every

establishment to harvest 20 percent of the land mechanically, so compliant establishments

should have a zero. This measure may overstate compliance since it cannot distinguish

establishments that mechanize some fraction below the required 20 percent.

While the Census does not record a continuous measure of mechanization, several con-

tinuously measured inputs serve as secondary outcomes in Appendix A.3.3. I consider five

machine-related outcomes: expenditure on contracting services, fuel expenditure, the number

of harvesting machines, machine rental expenditure, the value of all vehicles. I also consider

three labor-related outcomes: days paid to temporary workers, the number of temporary

workers, and the total number of workers.

The assignment variable is reported establishment area. The Census does not collect

administrative data on establishment area, so the Census variable may not be correctly

identify treatment status. As such, I test for strategic manipulation of the assignment

variable but find no evidence of such manipulation. See Appendix A.3.1 for details.

At the time of the 2006 Census, São Paulo establishments had been regulated for the

three previous years, but no other state had yet introduced regulation. Consequently, this

analysis focuses exclusively on establishments in the state of São Paulo. Unfortunately, it is

not feasible to incorporate additional years since the 2016 Census has not been completed

and there are substantive differences between the 1996 and 2006 Censuses.

17Given the level of detail and disaggregation, these data are confidential. To access them, I traveled to
a Census Bureau facility in Rio de Janeiro. I was permitted to analyze the data only in a secure room
and I was only allowed to remove programs and output files, all of which were inspected by Census Bureau
employees to ensure the anonymity of respondents.
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2.3.2 RD Estimation

The regression discontinuity design compares São Paulo establishments above and below the

150 hectare regulatory threshold. This exercise yields the average treatment effect at the

threshold. To the extent that the regulation has different effects for different size establish-

ments, this parameter is most informative about establishments that are close to the 150

hectare threshold.18

Using the method described in Calonico et al. (2014), I estimate the treatment effect of

the regulation as

τ = lim
x→150+

(
E[Yi | Xi = x ]

)
− lim

x→150−

(
E[Yi | Xi = x ]

)
= µY + − µY −

where Y is an outcome variable, x is establishment area, and the threshold is 150 hectares.

Separate local polynomials of degree p are estimated above and below the threshold:

τ̂p(hn) = µ̂+,p − µ̂−,p

µ̂+,p = e0 β̂+,p(hn)

µ̂−,p = e0 β̂−,p(hn)

with

β̂+,p(h) = arg min
β

n∑
i=1

1(Xi ≥ 0){Yi − rp(Xi)
′β}2KhnXi

β̂−,p(h) = arg min
β

n∑
i=1

1(Xi < 0){Yi − rp(Xi)
′β}2KhnXi

18In Appendix A.4, I include difference-in-diffences estimates which compare the difference between São
Paulo establishments above and below the the regulatory threshold, to the same difference among establish-
ments outside of São Paulo. The resulting parameter may be interpreted as an average treatment effect on
the treated. The results from this approach are substantively similar to the RD results.
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where rp(x) = (1, x, ..., xp)′, e0 = (1, 0, ..., 0), e Khn is a kernel function with a series of

bandwidths hn.

In choosing the parameters of the analysis, I follow the recommendations of Calonico

et al. (2014) but varying these choices does not substantively alter the results. Specifically:

i) bandwidths for the point estimate are selected using the method developed by Calonico

et al. (2014), which minimizes mean squared error, ii) bandwidths for the bias correction are

selected using the method developed by Calonico et al. (2016), which minimizes coverage

error, iii) I use the triangular kernel function, iv) I estimate local linear regressions (p = 1),

and v) variance is estimated using a nearest-neighbor approach clustered by municipality. I

use separate bandwidths on either side of the cutoff because the density of X is decreasing in

this region; forcing symmetric bandwidths results in many observations below the threshold

and few above. Finally, I report a 95% confidence interval instead of an estimated standard

error because correct inference requires that the confidence interval be recentered to account

for misspecification bias.
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Figure 2: Binned Scatter Plot and Local Linear Estimates

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
M

a
n

u
a

l 
O

n
ly

 (
F

ra
c
. 

o
f 

E
s
ta

b
lis

h
m

e
n

ts
)

0 50 100 150 200 250 300
Establishment Area (ha)

Source: 2006 Census of Agriculture.

τ̂ -0.041
[-0.139; 0.047]

h− 75
h+ 755
N 14,795
N− 1,863
N+ 2,402

Data from 2006 Agricultural Census. Local linear estimates are plotted for x ∈ [150 − h−,min{300, 150 + h+}]. Bin sizes set to mimic the variance
of the underlying data (see Calonico et al. (2015)).

13



The regression discontinuity estimates in Figure 2 show small, insignificant declines in

exclusive manual harvesting. Growers just above the area threshold, i.e. regulated growers,

are about 4 percentage points less likely to use manual harvesting only. The magnitude of

the estimates suggests that regulation accounts for less than a quarter of the near-complete

mechanization observed by 2014. According to the law, no regulated establishment could rely

exclusively on manual harvesting. Since more than 60 percent of regulated establishments

report manual harvesting only, a regulation that worked as intended would have a much larger

treatment effect. More importantly, we observe that virtually all sugarcane harvesting was

mechanized by 2014. At the extreme of the confidence interval, the estimates admit the

possibility that the regulation caused about 14 percent of growers to shift away from using

manual harvesting only. Fourteen percent is small compared to both the design of the

regulation and observed changes in behavior.

Even these small estimates may overstate the effect of the regulation since the binary

outcome does not capture the extent of mechanization. If the regulation causes some estab-

lishments to mechanize, then these establishments may meet or exceed the fraction required

by regulation. In this case, the regulation would still account for less than a quarter of the

near-complete mechanization observed in later years. But these establishments may instead

mechanize a small fraction of their land. I attempt to measure the extent of mechanization

by estimating the regression discontinuity using various agricultural inputs as continuous

proxy measures of mechanization. These estimates, detailed in Appednix A.3.1, are noisy

but show no evidence that regulated establishments used inputs differently than unregulated

establishments.

Appendix A.3.1 contains supplementary analysis, including estimates using a range of

bandwidths and density tests.

Overall, the evidence shows that regulated establishments were slightly less likely to use

manual harvesting alone. However, the regulation is far from sufficient to explain the rapid,

widespread change in harvesting techniques.
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In interpreting these results, it is important to acknowledge their limitations. These

estimates could miss an effect of the regulation under certain circumstances. For example,

suppose a small number of large growers switched harvesting techniques because of a targeted

government enforcement effort. If the targeted growers are far above the threshold area, they

are unlikely to affect the regression discontinuity estimates. However, if these growers control

a large fraction of total sugarcane area, they could drive large-scale changes in harvesting

practices. This is a real possibility since half of all sugarcane area is controlled by the largest

2 percent of establishments.

In the next section, I address this concern by combining a continuous, size-weighted

measure of mechanization with an identification strategy that does not rely on a comparison

of establishments near the 150 hectare threshold.

2.4 Difference-in-differences Evidence

2.4.1 Constructing Labor Intensity from Administrative Labor Data and Sur-

vey Data on Sugarcane Cultivation

I combine two data sources to construct a continuous, size-weighted measure of mechaniza-

tion. I measure mechanization as the hours of labor supplied by manual laborers in the

sugarcane industry (L) divided by the total area devoted to sugarcane cultivation (T ).19 La-

bor intensity is calculated for each munićıpio in each year.20 Aggregating to the munićıpio

level effectively weights mechanization by establishment size; if regulators change the be-

havior of the largest growers, this change might not be apparent when comparing growers

near the 150 hectare threshold, but it should be visible in aggregate labor intensity. The

numerator is drawn from confidential, administrative micro data maintained by the Brazilian

Ministry of Labor.21 Known by its Portuguese-language acronym RAIS, the micro data are

19I exclude most workers involved in mechanical harvesting by limiting the analysis to workers whose
occupation is “manual laborer.”

20In terms of area, population, and governance, Brazilian munićıpios are roughly equivalent to US counties.
21I combine two variables to calculate L: the length of an employment spell in months and the contracted

hours per week. In practice, the vast majority of sugarcane workers report 44 hours per week so the variation
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compiled annually and comprise the universe of formal employment.22 23 Each record in the

dataset corresponds to an employment spell, providing information about the employee and

the employer, including the municipality of work, wages, the duration of employment, hours

worked, plus detailed industry and job classifications. For each munćıpio-year, I measure the

quantity of labor L as the sum of hours worked by manual laborers in the sugarcane indus-

try. The denominator T is drawn from the PAM survey conducted by the Brazilian Census

Bureau IBGE; IBGE employees contact local producers and other industry participants to

determine the land area devoted to sugarcane cultivation in each munićıpio-year.

2.4.2 Identifying Variation from Cross-Sectional and Time-Series Differences in

Regulation

Cross-sectional and time-series variation in the stringency of the regulation enable its eval-

uation via a differences-in-differences approach. The first regulation was introduced in São

Paulo in 2002 and became more stringent over time. Other states introduced similarly-

structured regulation between 2008 and 2014. The fraction of land that growers were per-

mitted to burn or, equivalently, the fraction of land they were required to mechanize, varies

across states and over time. Figure 3 shows the mechanization requirement in each state

from 1999 to 2028. A value of zero, shaded red, means there is no mechanization require-

ment. A value of one, shaded green, means one hundred percent of property area must

be mechanized. I use this mechanization requirement (Pct) as the treatment variable in a

is primarily driven by the length of employment.
22Owing to the sensitive, identifiable information stored in RAIS, these data are confidential. I obtained

permission from the Brazilian Ministry of Labor to store and analyze the data at a secure facility maintained
by the University of Michigan.

23In interviews, farmers and farm workers indicate that labor in the sugarcane sector is predominantly
formal sector and unionized. As a consequence, RAIS captures roughly 60 to 75 percent of the sugarcane
and coffee employment recorded in household survey data. Direct comparisons between household survey
data, the PNAD, and RAIS are complicated for a several of reasons: i) the unit of analysis in each dataset is
different, ii) quantity of labor is measured differently, and iii) many sugarcane workers are seasonal migrants.
The figure I report here, 60 to 75 percent, is the national count of employment spells from RAIS divided
by national count of individuals from PNAD. I use the national counts because RAIS records the place of
work and PNAD records the place of residence. For seasonal migrants, these will not be the same so a single
individual might appear in different places in each dataset.

16



continuous differences-in-differences design. This design assumes that changes in states with

no change in stringency provide a counterfactual for states with a change in stringency.

2.4.3 Difference-in-differences Estimation

If regulation caused mechanization, we would expect the labor intensity of sugarcane harvest-

ing to fall in states where the regulation became more stringent as compared to neighboring

states without changes in regulation. I estimate the effect of the regulation on labor inten-

sity using a differences-in-differences approach adapted for a continuous treatment variable,

namely the stringency of regulation:

( L/T )j,s,t = δs + γt + ωPcts,t + εj,s,t, (1)

where j indexes municipality, s indexes state, and t indexes year. The outcome L/T is labor

intensity, defined as hours of labor contributed by manual workers in the sugarcane industry

divided by area harvested. The fixed effects δ and γ capture state-specific and year-specific

unobservables. Some specifications include municipality fixed effects instead of state fixed

effects. Finally, Pct measures the required fraction of mechanization; these values are shown

in Figure 3. The coefficient of interest is ω, which captures how the changing stringency of

the regulation affects labor intensity. Some specifications include a lag and lead of Pct to

capture anticipatory or delayed responses to the regulation.

The results, presented in Table 1, suggest that regulation can explain no more than

a quarter of the observed decline in labor intensity. The reported estimates show how

much labor intensity would change, in terms of hours per hectare, moving from unregulated

harvesting to a complete ban on burning. The point estimates from columns (1) and (2)

suggest that a complete ban on burning would actually increase by about 20 hours per

hectare. Assume the true effect of the regulation lies at the lower bound of the 95 percent

confidence interval in column 1, i.e. ω = 21.43 − 1.96 × 21.22 = −21.2. The average value
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Figure 3: Required Mechanization as a Fraction of Land Area
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Table 1: The Effect of Regulation on Labor Intensity (DiD)

(1) (2) (3) (4)
L / T L / T L / T L / T

Pctt−1 4.700 2.801
(17.97) (18.24)

Pctt 21.43 21.03 40.00 39.99
(21.22) (21.68) (20.89) (21.06)

Pctt+1 -2.830 1.315
(20.39) (20.95)

N 8,263 8,263 6,097 6,097
ȳ 82.0 82.0 84.7 84.7
Muni FE Y Y

Pct is the legal mechanization requirement.

Quantity of labor (L) from RAIS.

Area harvested (T ) from PAM.

Outcome Winsorized at the 1st and 99th percentiles.

SEs clustered by municipality.

of Pct, regulation stringency, was 0.573 in 2013. This implies that regulation reduced labor

intensity by 0.573 × 21.2 = 12.2 hours per hectare in 2013. This amounts to one quarter

of the observed reduction; in aggregate, labor intensity declined by 47 hours per hectare

between 2007 and 2013.

The estimates are stable with respect to controls, offering some hope that the estimated

effect of the regulation is not biased by omitted variables. The estimated effect of the

regulation is essentially unaffected by municipality fixed effects.24 The estimates are also

substantively similar when controlling for state-specific time trends (results omitted; avail-

able on request). The point estimates are larger in columns 4-6, which include a lag and

a lead of regulatory stringency. The larger estimates may result from the smaller sample,

since observations from 1999 and 2013 are omitted. In any case, they are not statistically

different from the corresponding estimates in columns 1-3.

These results suggest that regulation cannot explain more than a quarter of the observed

24Adding controls for munićıpio wages for manual laborers in sugarcane also has no affect on ω̂. Results
available on request.
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decline in labor intensity. The point estimates from columns (1) and (2) suggest that moving

from 0 to a 100 percent mechanization requirement would actually increase labor intensity

by about 20 hours per hectare.

Compared to the regression discontinuity, the difference-in-differences analysis estimates a

conceptually different parameter from a separate data, but both approaches lead to the same

conclusion: regulation accounted for a small fraction of the change in harvesting techniques.

The difference-in-differences estimates can be thought of as an average treatment effect on

the treated, measuring how labor intensity responded to regulation, on average, in regulated

counties. That, together with the use of munićıpio labor intensity as an outcome, makes this

approach sensitive to the behavior of large growers. Still, the effect of the regulation appears

limited.

3 The Role of Wages

While regulation may have played some role, the mechanization of sugarcane remains largely

unexplained. I turn now to the role of wages. I begin by describing the labor markets that

produced a 50 percent increase in real wages for manual laborers in sugarcane between 1999

to 2013. I then present a model that shows how the tipping-point behavior observed in

the data can emerge even in a frictionless, full-information environment. Finally, I estimate

sugarcane growers’ responsiveness to wage changes using an instrumental variables strategy.

3.1 The Market for Unskilled Labor in Brazil, 1999–2013

The late 1980s and early 1990s were a period of political change and economic uncertainty in

Brazil. The country emerged from military dictatorship in 1989 and the first democratically

elected president was impeached for corruption in 1992. Meanwhile, inflation ranged from

100 percent to over 30,000 percent between 1980 and 1995. As political and economic

conditions stabilized in the late 1990s, a period of rapid, sustained growth took hold in the
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early 2000s.

Sugarcane was part of and subject to a broad-based increase in labor demand; from 2002

to 2013, real wages rose substantially in all occupations and industries while hours worked

increased almost everywhere but agriculture. Figure 4 shows that, economy-wide, median

hourly wages increased by more than 50 percent in real terms. Hours worked increased

by more than 20 percent. Figure 5 shows the growth of real wages and hours worked by

industry. Figure 6 gives the same information by occupation. All industries and occupations

experienced meaningful wage growth from 2002–2013. The quantity of labor increased in

all industries except agriculture and domestic services. The quantity of labor increased in

all occupations except agricultural workers. Hours worked in agriculture fell by about 20

percent during this period.25

Growers faced steadily increasing wages for sugarcane workers before and during the

period of rapid mechanization, while labor supply appears to decline in later years. Even

adjusting for inflation, wages for sugarcane workers nearly doubled between 1999 and 2013.26

Increases in hours worked through 2007 imply increases in labor demand that coincide with

a large increase in area harvested. Subsequent decreases in hours, combined with higher

wages, suggest contractions in labor supply from 2008 to 2013 (see Figure 7).

25The information in this paragraph, along with Figures 4, 5, and 6, is drawn from a nationally-
representative household survey called the Pesquisa Nacional por Amostra de Domićılios (PNAD). Wages
and hours worked are from a reference week, typically in early September, that includes the harvest season
for many crops, including sugarcane.

26Author’s calculations using administrative data (RAIS). Results are substantively similar using house-
hold survey data (PNAD).
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Figure 4: Aggregate Employment and Real Wages from 1999–2013

(a) Hours on the horizontal axis to emphasize movements of supply and demand

(b) Years on the horizontal axis to emphasize evolution of each series

From PNAD micro data; PNAD not conducted in 2010 because that was a census year. Includes all paid

workers. Hourly wages measured in 2003 R$.
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Figure 5: Change in Wage and Employment 2002–2013 by Industry

From PNAD micro data. Includes all paid workers. Hourly wages measured in 2003 R$. Industries are Agri-

culture (Ag), Industry (Ind), Manufacturing (Man), Construction (Con), Trade & repair (T/R), Hospitality

(Hosp), Transport, communication, & storage (Trans), Public administration (Pub), Education, health, &

social services (Ed/Med), Domestic services (Dom), Other services (Serv), Other (Oth). Changes to PNAD

industry codes prohibit easy comparisons to earlier years.

Figure 6: Change in Wage and Employment 2002–2013 by Occupation

From PNAD micro data. Includes all paid workers. Hourly wages measured in 2003 R$. Occupations are

Managers (Man), Professionals in arts and sciences (Prof), Mid-level technicians (Tech), Administrative

workers (Adm), Service workers (Serv), Sales and business services (Sale), Agricultural workers (Ag), Pro-

duction, construction, industrial, repair workers (Prod), Military (Mil). Changes to PNAD occupation codes

prohibit easy comparisons to earlier years.
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Figure 7: Employment and Wages in Sugarcane from 1999–2013

(a) Hours on the horizontal axis to emphasize movements of supply and demand

(b) Years on the horizontal axis to emphasize evolution of each series

From RAIS administrative data; results from PNAD survey data are substantively similar. Includes

workers in the sugarcane-growing states of South-Central Brazil, limited by industry (sugarcane

cultivation) and occupation (agricultural worker). Hourly wages measured in 2003 R$.
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3.2 Sugarcane Cultivation

To inform a model of technology adoption, I summarize some relevant features of sugarcane

cultivation.

Sugarcane growers may harvest manually or mechanically, each with its own inputs. Using

the manual technology, unskilled workers cut sugarcane stalks with basic tools like machetes.

With the mechanical technology, trained machine operators use sophisticated harvesters to

cut and clean the stalks. Because the types of labor and capital are substantively different

between the two technologies, I treat them as separate inputs.

The capital and labor shares are different between the two harvesting technologies. The

observed capital to labor ratio is higher for the mechanical harvesting technology. In in-

terviews, growers and machine manufacturers report that harvesting the same area requires

70 to 90 percent less labor using the mechanical technology as compared to the manual

technology.

The sharing of harvesting machines is extensive so I will assume growers do not face

fixed costs of acquiring machines. In practice, there are several ways to share machines,

including contract harvest services, machine rental, and land rental. Data indicate that

sharing is widespread: according to the 2006 Census of Agriculture, fewer than 10 percent

of establishments that use mechanical harvesting actually own a harvesting machine.

The productivity of the manual technology is greatly enhanced by pre-harvest burning.

Restrictions on burning effectively decrease total factor productivity of the manual technol-

ogy. In a burned field, workers can clear 8 to 10 tons of sugarcane per hour. In an unburned

field, slowed by heavy dense vegetation, workers clear around 3 tons of sugarcane per hour.

While it is possible, pre-harvest burning is almost never combined with mechanical harvest-

ing. Machine harvesters do move slightly faster in a burned field but one important feature

of this technology is that, relative to manual harvesting, burning offers a very small increase

in productivity.

The productivity of each harvesting technique depends on characteristics of the land. For
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example, turning large harvesting machines is slow so the size, shape, and layout of a parcel

affect the rate of harvesting. Machines must proceed slowly and cautiously along hillsides.

Mechanical harvesters cut as little as 450 tons per day on poorly prepared fields and as much

as 1,000 tons per day on ideally prepared fields. While the productivity of manual harvesting

also depends on parcel characteristics, it is much less sensitive to those characteristics.

3.3 Modeling the Choice of Harvest Technologies

One key fact in the data is that wages rose continuously for many years while mechanical

harvesting showed a kind of S-shaped adoption: initially flat and then sharply increasing.

S-shaped adoption is a common empirical finding in technology adoption so models of tech-

nology adoption inevitably account for this behavior somehow. In one class of models, this

behavior originates from information diffusion or learning by doing (see, e.g., Foster and

Rosenzweig (1995)). In another class of models, a fixed cost results in a size threshold for

adoption and the S-shape comes from the interaction between changing factor prices and the

size distribution (see, e.g., David (1969)). Manuelli and Seshadri (2014) develop a model of

tractor adoption that, as in this paper, has no fixed costs or information diffusion. They

argue that changing factor prices and improvements to the technology itself were the major

drivers of adoption.

In the model presented below, I show that S-shaped adoption can be explained by factor

prices alone, emerging in a full information environment with no fixed costs and no improve-

ments to technology. S-shaped adoption in this model follows from three assumptions. First,

that aggregate production is the sum of two production functions, one for each harvesting

technology. Second, that each of the two production functions has constant or increasing

returns to scale. These two assumptions imply that, for a given parcel of land, a profit-

maximizing grower faces a threshold wage. Above the threshold, the grower will harvest

the whole parcel mechanically and below the threshold the grower will harvest manually.

The third key assumption is that these thresholds depend on characteristics of the land, like
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steepness, which have an S-shaped distribution. Thus, steadily rising wages can give rise to

abrupt changes in the rate of mechanization.

The productivity of each harvesting techniques depends on characteristics of the land,

so the model considers how a grower allocates a homogenous parcel of land between manual

and mechanical harvesting techniques. Although analyzing homogenous pieces of land might

seem unrealistic, it enhances the model’s flexibility. The total area owned by a single grower

may be broken into several parcels that are internally homogenous and the grower may decide

to harvest each parcel differently.

As described above, growers do not face fixed costs to acquire a harvesting machine.

Other fixed costs of mechanization, if any, are incorporated into the productivity of mechan-

ical harvesting. For example, changing the layout of rows can increase the productivity of

machine harvesting but, in many cases, it is still possible to harvest mechanically with a

suboptimal layout. So, instead of including a fixed cost to change the layout, a parcel with

a suboptimal layout will simply have a low productivity of mechanical harvesting.

The model reflects the fact that manual and mechanical harvesting apply fundamentally

different types of labor and capital to the same land. The manual harvesting tool is a

machete while the mechanical harvesting tool is a sort of combine. Those machines are

operated by trained drivers while the manual harvesting is accomplished by unskilled workers.

Thus, each technology (manual is denoted p for “person” and mechanical is denoted m for

“machine”) has separate inputs and factor prices: Lm, Km, Lp, Kp and wm, rm, wp, rp. Land,

T , is a normalized fixed factor Tm + Tp = 1. Production functions are constant elasticity of
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substitution (CES) with constant returns to scale (CRS):27

Ym = Am

(
αK−ηm + βL−ηm + (1− α− β)T−ηm

)−1
η

and (2)

Yp = Ap

(
γK−ζp + δL−ζp + (1− γ − δ)T−ζp

)−1
ζ

. (3)

Growers solve the following profit maximization problem:

max
L,K,T

Ym + Yp − wmLm − rmKm − wpLp − rpKp (4)

s.t. Tp + Tm = 1. (5)

I interpret the mechanical productivity term Am as the suitability of a parcel for mechanical

harvesting. This parameter will be high for flat parcels with perfectly arranged rows. It

will be low for steep parcels or parcels with less-than-ideal layouts. The major source of

variation in the manual productivity term Ap will be burning. Manual productivity is high

for a burned parcel and low for an unburned parcel. I assume that wages and rental rates are

not affected by the decisions made for any individual parcel, i.e. factor prices are exogenous.

In this model, growers will generally allocate an entire parcel to only one harvesting

technique. This result follows from the constant returns to scale in each production function

combined with linear costs; depending on productivities and factor prices, one harvesting

technique will be cheaper than the other.28 This observation leads to a proposition.

Proposition 1. There exists a threshold manual wage for each parcel, above which growers

mechanize and below which they harvest manually. For some combination of parameters

and factor prices, growers are indifferent between techniques, which can be expressed as a

27The CES form offers some generality. Because it is difficult to substitute between capital and labor
within each technology, a Leontieff production function may be the most plausible but that is a limiting case
of the CES production function.

28The same result emerges with increasing returns to scale. With decreasing returns to scale, it is still
possible that growers will choose only one technique because land is a fixed factor.
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threshold wage:

wp = φ(Ap, Am, rp, rm, wm, α, β, η, γ, δ, ζ) (6)

where
∂φ

∂Ap
> 0,

∂φ

∂Am
< 0. (7)

Naturally, higher wages will encourage mechanization but, for any given parcel, the

threshold wage will depend on several parameters. Figure 8a graphically describes a grower’s

optimal choices. For wages below the threshold, growers mechanize none of the parcel

(Tm = 0). For wages about the threshold, growers mechanize all of the parcel (Tm = 1).

Each parcel may have a different threshold wage φ which is determined by several param-

eters. Taking parcel steepness, a determinant of Am, as an example, flatter parcels will

mechanize at lower ages than steeper parcels.

Since each parcel may have a different threshold wage φ, the aggregate response to wage

changes depends on the distribution of φ. Since parcels differ in terms of characteristics like

steepness, productivities Ap, Am differ across parcels. Different productivities imply different

thresholds φ. Thus, differences across parcels give rise a distribution of threshold wages φ.

If the cumulative distribution of φ is S-shaped, then steady increases in wages can lead

to abrupt changes in the rate of mechanization. In places where the distribution is flat, wage

changes will have limited effects on harvesting techniques. This is a situation where, for

most farms, manual harvesting is either so cheap or so expensive that small wage changes

have no impact on the choice of technique. In places where the distribution is steep, wage

changes will have large effects because here many parcels are nearly indifferent between the

two techniques. Figure 8b illustrates this point. G(φ) is a hypothetical CDF of the threshold

φ across all parcels. A vertical line gives the current manual wage wp. All parcels with a

threshold φ below wp will mechanize. All parcels above will harvest manually. An increase

in wage between periods t = 1 and t = 2 induces very few parcels to mechanize. An identical

increase in wage between periods t = 2 and t = 3 induces many parcels to mechanize as the
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wage wp,3 is now above the threshold for a large fraction of parcels.

This prediction is underpinned by the S shape of the CDF of threshold wages; I find some

support for this shape in the data. First, it’s worth noting that every CDF has steep and flat

portions, unless the underlying variable is uniformly distributed. Beyond that theoretical

point, I find S-shaped CDFs in two parcel characteristics that affect the threshold wage

through productivity Am: parcel steepness and parcel size. Recall that steeper plots require

machines to move more slowly, lowering Am and smaller plots also lower Am be requiring

machines to turn more frequently. Figure 9a shows the empirical CDF of parcel grades,

Figure 9b shows the empirical CDF of parcel area, and Figure 9c shows the joint density

of parcel grade and area.29 Most sugarcane parcels are observed to have similar steepness

and area. If these characteristics are important determinants of the threshold wage, then

we would expect most sugarcane parcels to have similar threshold wages. Future drafts will

present direct evidence regarding the relationship between grade, area, and threshold wages.

Thus, profit maximizing growers, even in the absence of information frictions or fixed

costs, may respond to continuously rising wages by sharply increasing the rate of mechaniza-

tion.

29Note that the unit of observation is a parcel and not an establishment as in the Census of Agriculture.
A parcel is defined as a unbroken area of sugarcane cultivation that is harvested using the same technique.
One establishment may be composed of many parcels.
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(a) Land allocation under the model

(b) Harvesting techniques and the distribution of φ
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Figure 9: Empirical Support for S-Shaped Adoption

(a) Parcel-level CDF of Steepness (2010) (b) Parcel-level CDF of Area (2010)

(c) Joint Density of Steepness and Area (2010)
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3.4 Estimating The Effect of Wages on Mechanization

This section will estimate the change in labor intensity that would be expected solely due

to the observed change in wages. Measuring the effect of wages requires exogenous variation

to solve a basic problem of reverse causality, namely that mechanization itself could affect

wages by shifting labor demand. This section details a method for estimating the elasticity

of labor demand in sugarcane using instrumental variables based on fluctuations in labor

demand from other agricultural sectors.

The study region is a major producer of sugarcane, coffee, oranges, soybeans, and maize.

From 2006–2010, the study region accounted for 32 percent of world sugarcane production, 21

percent of world coffee production, 23 percent of world orange production, and 4 percent of

world maize production.30 According to household survey data, each crop employs between

0.5 and 2.5 million workers.31

I construct instruments for sugarcane wages that are conceptually similar to the instru-

ment used in Dube and Vargas (2013); exogenous fluctuations in the markets for other crops

generate variation in the wage for sugarcane workers. The intuition is straightforward. There

are four other crops that i) are grown in the same region as sugarcane, ii) have a large land

area devoted to their cultivation, iii) employ at least as many workers as sugarcane, and iv)

employ similar types of workers as sugarcane. They are maize, soybeans, coffee, and oranges.

Shocks to the production of these crops will likely shift the supply of labor facing sugarcane

producers. For instance, unfavorable rains in Indonesia lead to lower coffee output, raising

the international price. Coffee farmers hire more labor, increasing their output with extra

pruning and tending. Because the newly-hired coffee workers might have harvested sugar-

cane, low coffee output in Indonesia generates a contraction in the labor supply faced by

sugarcane farmers.

Taking coffee as an example, the instruments are constructed as the interaction between

30Brazilian output from PAM. World output from FAO.
31Calculated from PNAD.
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two components: coffee output from the top three other producers interacted with the histor-

ical area cultivated of coffee. The first component of each instrument is the output from the

top 3 producers of coffee, excluding Brazil.32 This provides time-varying shifts in the labor

supply faced by sugarcane farmers. The magnitude of that shift will depend on the impor-

tance of coffee to the local economy, offering a source of cross-sectional variation. Therefore,

the second component of each instrument is the historical area cultivated of coffee, calculated

as the 1994–1998 average.

I include a set of lags for each crop to account for the possibility that agricultural labor

demand does not respond to contemporaneous price shocks. The speed of the response might

vary by crops so I use several different lag structures. For the temporary crops maize and

soy, which can be harvested the same season they are planted, I use contemporaneous and

previous year data. For the permanent crops coffee and oranges, which take 3 to 5 years to

bear fruit, I use contemporaneous data and four lags. The vector of excluded instruments Z

is given by

Zj,t ≡ {Intmaizej × Y maize
t , Intmaizej × Y maize

t−1 ,

Intsoyj × Y
soy
t , Intsoyj × Y

soy
t−1 ,

Intcofj × Y
cof
t , Intcofj × Y

cof
t−1 , ..., Intcofj × Y

cof
t−4 ,

Intorngj × Y orng
t , Intorngj × Y orng

t−1 , ..., Intorngj × Y orng
t−4 },

(8)

where Y represents logged output from the top 3 producers of crop c excluding Brazil. Inten-

sity of cultivation is defined as the historical average area of crop c harvested in municipality

j.

32The international price might influence agricultural labor supply more directly but this region of Brazil
grows 20 to 30 percent of the world’s coffee, soybeans, oranges, and sugarcane. Therefore, Brazilian output
can have meaningful impacts on the international price of those crops. Imagine there’s a frost in Brazil that
damages both coffee and sugarcane plants. As a consequence, international coffee prices rise and sugarcane
farmers hire less labor. In this case, the frost is directly affecting both the international price and the
outcome. International prices cannot satisfy the exclusion restriction required of a valid instrument. I use
output from other large producers to address this concern. However, this strategy may not totally eliminate
the confounding effects of weather if those large producers change their output meaningfully in response to
events in Brazil.
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3.4.1 Measuring Wages and Quantities Labor, Constructing the Instrument

As in Section Section 2.4.1, I turn to confidential administrative data (RAIS) for annual,

munićıpio-level wages and quantities of labor. Recall that these data include the universe of

formal-sector workers and most sugarcane workers are in the formal sector. Using detailed

occupation and industry codes, I measure the wages and employment of only the relevant

workers: manual laborers in the sugarcane industry. I draw other-country crop output

from the UN Food and Agriculture Oragnization’s FAOSTAT database. The PAM survey

described in Section 2.4.1 contains annual, munićıpio-level area harvested for all crops; I

draw contemporaneous sugarcane area and historical area for other crops are from PAM.

3.4.2 Estimating the Elasticity of Labor Demand via IV

The first-stage regression takes the form:

logwSj,t = γ0 + γ1Xj,t + ΓZj,t + u, (9)

where the superscript S indicates sugarcane, j indexes municipality, and t indexes year. I

measure wages wS as the median real wage for manual laborers employed in the sugarcane

industry. This study is primarily concerned with the rapid decline in labor intensity asso-

ciated with mechanization. Sugarcane area harvested increase meaningfully between 1999

and 2013. To control for the associated increase in labor demand, X includes the natural

logarithm of sugarcane area harvested.

The second stage regression is given by:

logLSj,t = β0 + β1Xj,t + β2 ̂logwSj,t + ε (10)

The outcome variable LS is the hours worked by manual laborers employed by sugarcane

growers. The object of interest is β2 which, when multiplied by the observe wage change,
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will provide an estimate of the change in labor predicted by the change in wages.

Table 2 below presents the estimation results from the second stage. The estimates in

the first row show the increase in log hours associated with a one log point increase in

area harvested. The second row displays estimates of the wage elasticity of labor demand.

Columns (1)-(5) estimate equation (10) using different sets of instruments. Column (1) uses

the maize instruments only. Columns (2)-(4) use soybeans only, coffee only, and oranges

only. Column (5) uses the instruments from all four crops. Column (6) uses the instruments

from all four crops but adds a squared wage term to capture the curvature in labor demand

predicted by the model.33

Table 2: IV Estimates of Wage Elasticity of Labor Demand

(1) (2) (3) (4) (5) (6)
Maize Soybeans Coffee Oranges All All

log(AS) 0.852∗∗∗ 0.598∗∗∗ 0.813∗∗∗ 0.868∗∗∗ 0.840∗∗∗ 0.794∗∗∗

(0.0653) (0.0900) (0.0438) (0.0560) (0.0405) (0.0446)
log(wS) -2.938∗∗ 1.423 -2.204∗∗∗ -3.201∗∗∗ -2.729∗∗∗ 38.86∗

(0.992) (1.477) (0.551) (0.726) (0.420) (17.01)
[log(wS)]2 -3.383∗

(1.387)

N 8,233 8,233 8,179 8,179 8,179 8,179
F stat 19.9 13.9 15.1 5.1 9.5

SEs clustered by county.

The estimates of the wage elasticity of labor demand are statistically significant with

a consistent and credible magnitude. Columns (1)-(4) use only the instruments associated

with one crop. Each of the four estimates relies on a different source of variation; the

cross-sectional intensities and price series for each crop are are different. In three out of

the four crops, the estimated elasticities are negative, statistically significant, and similar

in magnitude. The estimate from soybeans is imprecise; although the point estimate is

33The sample includes the years 1999-2013. About 400 municipalities appear in the early years, increasing
to almost 800 by the end of the sample. This increase likely corresponds to the approximate doubling of
sugarcane cultivation during that time but, as the labor data come from an administrative dataset, it could
also be the result of increased reporting.
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Figure 10: Quadratic and Linear IV Results

positive 1.4, the lower bound of the 95 percent confidence interval is negative 1.5, roughly.

For oranges, the excluded instruments are not as strong as one would like, with a first-stage

F-statistic of 5.1. Column (5) uses the instruments for all crops, again finding a strongly

significant elasticity near -3.

There is some evidence of the curvature in labor demand that is predicted by the model.

Column (6) accounts for this curvature by adding the square of log wages as second endoge-

nous variable. As shown in Figure 10, the models in columns (5) and (6) make roughly

similar predictions for the quantity of labor over the observed range of wages.34 However,

the model from column (6) predicts a smaller elasticity at lower wages and a larger elasticity

at higher wages. This pattern is consistent with both the model and the aggregate pattern

of mechanization.

3.4.3 Expected Change in Labor Intensity from Observed Change in Wages

We can predict the change in labor intensity attributable to the wage changes alone by

multiplying the observed wage change by the estimated elasticity. This calculation assumes

34The log of real median wages for sugarcane workers was near 6 in 1999 and close to 6.5 by 2013.
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higher wages result from a decrease in labor supply; area harvested is meant to control for

any shifts in labor demand. Differencing the second stage, equation (10) yields:

∆̂ logLs = β̂1 ×∆ logAs + β̂2 ×∆ logwS (11)

Now, I substitute the estimates for β̂1, β̂2 from Column (5) above, the change in the log of

aggregate area cultivated for ∆ logAs, and the change in the log of aggregate median real

wages for ∆ logws:

= 0.84× 0.7 +−2.7× 0.5 = −0.76 with 95% CI [−1.13;−0.39] (12)

Given an observed change in the log of aggregate quantity of labor of -0.49, the wage changes

are sufficient to predict the decline in labor intensity.

4 Conclusions

The course of development involves a shift from low productivity agriculture that employs

many to high productivity agriculture that employs few. Brazilian sugarcane offers a window

into this process with the recent adoption of mechanized harvesting.

As lawmakers contemplated regulation, economists predicted that mechanization would

dramatically depress employment (Osse, 2002). Instead, the adoption of labor-saving tech-

nology coincided with a period of tightness in the labor market, characterized by large wage

increases and increases in aggregate employment. By making manual harvesting more ex-

pensive, these wage changes potentially contributed to mechanization but mechanization

began after years of rising wages.

Wages are not the only candidate explanation; beginning in 2002, state governments

passed regulation that prioritized reductions to pollution and its associated health benefits.

At the predicted cost of hundreds of thousands of jobs, sugarcane growers were obligated
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to reduce and eventually halt the pre-harvest burning that facilitates manual harvesting.

Increasingly stringent regulation coincides with the adoption of machine harvesting.

However, the empirical analysis developed in this paper argues that development itself,

in the form of rising wages for some of the poorest workers in Brazil, pulled labor out of

agriculture. A range of econometric evaluations find limited evidence that the regulation

contributed to mechanization. By contrast, my estimate of the elasticity of labor demand

suggests that the observed change in wages is sufficient to explain mechanization.

These empirical results are supported by a theoretical framework that reconciles the

trends in wages and mechanization. The model has two key insights. First, that there exists

a threshold wage for each parcel of land; for wages below that threshold it is cheaper to

harvest manually but for wages above that threshold it is cheaper to harvest mechanically.

Therefore, if wages do not rise above the threshold, they can increase without causing a

change in harvesting techniques. The second insight is that each parcel of land will have

a different threshold based on the characteristics of that parcel. Because each parcel has a

different threshold wage, mechanized and manual harvesting will coexist at certain wages.

This paper argues that mechanization was caused by increasing wages without thoroughly

investigating why wages were increasing. That wages were increasing in spite of widespread

mechanization is surprising and it suggests large increases in labor demand, especially for

low-skilled workers. Future research will explore changes in Brazilian labor demand, iden-

tifying the sectors responsible and exploring the consequences for the wage distribution. A

companion paper studies the health benefits that might be expected from the reduction in

burning.

Another way to view these results is as a success of sustainable development. It is often

assumed that more economic output means more pollution but, in this context, major devel-

opment markers, like wages for the poor and agricultural productivity, improved alongside

environmental outcomes. Sugarcane farmers once burned an area the size of New Jersey

every year. Mechanization has significantly curtailed the air pollution associated with sug-

39



arcane harvesting even as agricultural workers earn substantially more. Development may

well have led to a better environment in this case.
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regi¬ãodeRibeir¬ão.OEstadodeS.Paulo.

Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica, 29(4):741–
766.

Manuelli, R. E. and Seshadri, A. (2014). Frictionless Technology Diffusion: The Case of
Tractors. American Economic Review, 104(4):1368–91.

McCrary, J. (2008). Manipulation of the Running Variable in the Regression Discontinuity
Design: A Density Test . Journal of Econometrics, 142(2):698 – 714.

Morris, M., Kelly, V. A., Kopicki, R. J., and Byerlee, D. (2007). Fertilizer Use in African
Agriculture. The World Bank.

O Globo G1 (2016). Pol¬́ıciaAmbientalusaimagensdesat¬éliteparaidentificarqueimadas.
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A Appendix

A.1 Labor Demand

It is possible to derive an analytical expression for labor demand by assuming a form of the

production function and assuming a joint distribution of threshold wage and parcel area.

I begin by assuming that the production functions are Leontieff. From section 3.3, farmers

choose to harvest manually when the manual wage wp is below the threshold wage ψ. For

parcels which are harvested manually, i.e. for which ψ ≥ wp, a Leontieff production function

has two implications i) farmers will devote the entire parcel area to manual harvesting

(Tp = T ), ii) Lp will always be employed in a fixed proportion to land area Lp = λpTp = λpT .

Thus, for any given parcel, labor demand is given by:

Lp =

0 if ψ ≤ wp

λpT if ψ > wp
(13)

Moving from the parcel-level labor demand to aggregate labor demand requires an as-

sumption about the joint distribution of ψ and land area T . For analytical convenience, I

assume that ψ, T have a joint normal distribution:(
ψ

T

)
∼ N

[(
µψ

µT

)
,

(
σ2
ψ ρσψσT

ρσψσT σ2
T

)]
(14)

Aggregate labor demand will be given by (with i indexing N total parcels):

E

[∑
i

Lp

]
=
∑
i

E
[
Lp
]

= N P(ψ > wp)λpE
[
T | ψ > wp

]
(15)

= N

(
1− Φ

(
wp − µψ
σψ

))
λpE

[
T | ψ > wp

]
(16)

where Φ() is the standard normal CDF. To derive an expression for the last expectation,

begin with the conditional expectation of a jointly distributed normal variable

E
[
T | ψ = wp

]
= µT + ρ

σT
σψ

(
E
[
ψ | ψ = wp

]
− µψ

)
(17)
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Then, by the Law of Iterated Expectations,

E
[
T | ψ > wp

]
= µT + ρ

σT
σψ

(
E
[
ψ | ψ > wp

]
− µψ

)
(18)

= µT + ρ
σT
σψ

(
µψ + σψ

φ
(wp−µψ

σψ

)
1− Φ

(wp−µψ
σψ

) − µψ) (19)

= µT + ρσT
φ
(wp−µψ

σψ

)
1− Φ

(wp−µψ
σψ

) (20)

where φ() is the standard normal PDF. Returning to equation 16,

E

[∑
i

Lp

]
=
∑
i

E
[
Lp
]

= N

(
1− Φ

(
wp − µψ
σψ

))
λp

(
µT + ρσT

φ
(wp−µψ

σψ

)
1− Φ

(wp−µψ
σψ

)) (21)

= NλpµT︸ ︷︷ ︸
scale

[(
1− Φ

(
wp − µψ
σψ

))
︸ ︷︷ ︸
Crossing thresholds

+ ρ
σT
µT

φ
(wp − µψ

σψ

)
︸ ︷︷ ︸

threshold area corr.

]
(22)

We can interpret this expression as the combination of three effects. The first term, labeled

“scale,” scales the quantity of labor based on the number of parcels N and the labor required

to harvest a parcel of average area, λpµT . The second term, labeled “crossing thresholds,”

measures the fraction of parcels that are harvesting manually, i.e. those with thresholds ψ

above the observed wage wp. The final term, labeled “threshold area corr.,” adjusts quantity

of labor based on the correlation between parcel threshold ψ and parcel area T . Because

parcels only harvest manually if the threshold ψ is above the observed wage wp, labor is only

demanded by parcels in a truncated portion of the threshold distribution. If parcel thresholds

ψ are correlated with parcel area T , knowing that a parcel threshold ψ is above the observed

wage wp also reveals something about the area of parcels that are demanding labor. For

example, if large parcels have lower thresholds, i.e. T and ψ are negatively correlated, we

must adjust the quantity of labor to reflect the fact that manually harvested parcels will be

the smallest parcels.

This expression provides general intuition about the competing forces that determine

aggregate demand for sugarcane harvest labor. However, deriving this expression required

two non-trivial assumptions. Leontieff production functions are reasonable in this context

as inputs are not readily substitutable. The joint normal distribution, however, is less

defensible. The wage threshold ψ is unobservable and the distribution of parcel areas is

not normal. The resulting labor demand has an undesirable feature: it can have a positive

slope if parcel area T has a high coefficient of variation and / or the correlation ρ is large
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in absolute value. Figure 11 plots Equation 22 for several values of ρ with a coefficient

of variation equal to 2.5, which lies at the low end of the observed value across the years

2006–2010.

Figure 11: Labor Demand with Different Correlations ρ

A.2 Regression Discontinuity Evidence: The Steepness Threshold

Below, I describe a supplemental regression discontinuity analysis that takes advantage of

another threshold in São Paulo’s regulation. In addition to the 150 hectare area threshold,

growers were exempted from strict regulation if their plots had a steepness of at least 12

percent.

Exploiting the steepness threshold built into the regulation, I evaluate the regulation with

a regression discontinuity design with burning as the outcome. From satellite data analyzed

by the Brazilian space agency INPE, I directly observe the location and harvesting method

for all sugarcane cultivation in the state of São Paulo from 2006 to 2012. I calculate the

mean slope of each plot using a high-resolution digital elevation model produced by NASA.35

35In principle, the area of 150 hectares offers another threshold which might be tested using a RD analysis.
Unfortunately, the parcels identified in the satellite data do not necessarily correspond to legally defined
property boundaries. Comparing the distribution of areas in the satellite data to the distribution of farm
areas from the 2006 Agricultural Census, parcels in the satellite data are generally smaller than the farm area.
Since the regulation was meant to apply to each farm, using satellite-measured area would systematically
understate the running variable, undermining any resulting RD estimates. In future drafts, I will exploit
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As in Section 2.3.2, I use the method described in Calonico et al. (2014). The outcome

Y takes a value of one if the field is unburned and zero otherwise and the running variable

parcel steepness.36

We would expect to observe a discontinuity in harvesting practices at the grade and size

thresholds if i) farmers at each threshold would choose manual harvests in the absence of

the regulation and ii) the regulation was effective. We would expect these discontinuities to

appear in 2002 and to widen in 2006 and 2007, corresponding to changes in the law.

The regulation does not appear to affect harvesting practices near the threshold; there

is no statistically significant difference in burning propensity across the area or steepness

thresholds. Figure 12 show the binned averages, a fitted global polynomial control function,

and the threshold for 2007.37 This figure is largely representative of the other years; some-

where between 40 and 60 percent of fields are burned and there is no jump in burning at

the thresholds. Figure 13 plot the estimated average treatment effect at the threshold for

each year, along with 95 percent confidence intervals. The estimates represents a percentage

point change in the likelihood of mechanization associated with being subject to the regu-

lation, i.e. below the steepness threshold. If the regulation caused mechanization below the

threshold, we would expect statistically significant positive results. Instead, we find negative

point estimates, none of which is significantly different from zero.

The estimates are somewhat imprecise but they rule out effects of a size we would expect

if the regulation were binding and well-enforced. The RD estimates the change in the

likelihood that a parcel will be mechanized moving from the unregulated to the regulated

side of the threshold. Because the area of parcels will be equal, in expectation, on either side

of the threshold, the estimate also corresponds to the fraction of area mechanized because

of the regulation.38 Between 2007 and 2009, the agreement required the mechanization of

50 percent of farm area for farms below 12 percent grade and no mechanization of farms

above 12 percent grade. Thus, if the regulation were binding and well-enforced near the

threshold, we would expect a RD estimate of 0.5 in those years. The upper limit of the

confidence interval is only about one quarter that size. Similar logic and conclusions apply

this 150 hectare area threshold using confidential micro data from the 2006 Agricultural Census. This issue
will also affect the measurement of steepness. However, with steepness, the splitting of farms may just add
noise to the measured running variable, rather than systematically mismeasuring it.

36I calculate parcel steepness using a digital elevation map from NASA’s Shuttle Radar Topography
Mission. These data record elevation on a 30 meter by 30 meter grid. I calculate percent grade at each grid
point and take the mean of all grid points within each parcel. Results do not change substantively if I use
the 75th percentile instead of the mean.

37The global polynomial is for illustrative purposes only. The RD estimates are the difference between
intercepts of a local polynomial.

38Running the RD analysis with area as the outcome variable reveals no statistically significant differences
in area across the threshold.
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Figure 12: Burning Propensity and Fitted Polynomial (2007)

Excludes plots below the 150 ha threshold for area; Triangular kernel; BW and bin sizes estimated as in

Calonico, Cattaneo, and Titiunik.

to the estimates from 2006 and 2010.

There are a several potential explanations for these results. One is that the regulation

had no effect, at least not near the thresholds. Another is that I mismeasure the running

variable. For this analysis, each “parcel” is a polygon outlined from a satellite image that

may or may not correspond to the unit at which the policy was applied. As outlined above,

this limitation of the data introduces noise into the running variable. This noise will decrease

the precision of the estimates and attenuate the point estimates so, if there is a small effect

of the regulation, the analysis might fail to detect it. A final explanation is that, instead of

changing harvesting practices, farmers on the regulated side threshold switched crops or lay

fallow. I will consider changes in land use as in outcome in future drafts.

A.3 Supplemental Analysis for Regression Discontinuity Estimates

Using Size Threshold

A.3.1 Bandwidths and Running Variable Density

This section will address two issues relevant to the validity of regression discontinuity esti-

mates: i) continuity of the running variable at the threshold and ii) bandwidth selection.

The density of establishment area is discontinuous at the regulatory threshold; rather

than manipulation to avoid regulation, this discontinuity appears to the result of heaping
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Figure 13: Estimated Average Treatment Effect at the Threshold by Year

Excludes plots below the 150 ha threshold for area; Triangular kernel; BW and bin sizes estimated as in

Calonico, Cattaneo, and Titiunik.

at multiples of 10. I test for continuity of the density using the procedure described by

Cattaneo et al. (2016) but results are substantively similar using McCrary (2008). Figure

14 shows the p-values for tests of continuity conducted at every multiple of 10 between 100

and 200 hectares, both inside and outside of São Paulo. At the 95 percent level, the test

rejects continuity for 8 of 11 area thresholds inside São Paulo. Outside São Paulo, among

neighboring states without a burning regulation at the time, the test rejects continuity for 7

of 11 area thresholds. The histogram shown in Figure 15 makes clear that observations are

concentrated near multiples of 5. Moreover, the histogram does not suggest a large mass of

establishments strategically underreporting their area to avoid mechanization.

Heaping is unlikely to introduce a material bias in the RD estimates. Imagine that

the regulator and the grower know the establishment’s true area but, responding to the

Census, the grower rounds area to the nearest multiple of 5. The RD estimate assumes

that establishments who report 150 regulated when, in this scenario, some are not. In

principle, the RD could underestimate the effect of regulation by counting some unregulated

establishments as regulated. However, this bias is probably small because, in spite of the

statistically significant discontinuity in the density, less than 40 observations report exactly

150 hectares, only a fraction of these would be misclassified, the estimation samples include

over 4,000 observations, and the outcome is binary.

Heaping may explain the discontinuities in the density of the running variable but it does

not rule out manipulation; if manipulation is present, it suggests that the already small RD
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Figure 14: p-values for Continuity of the Density of the Running Variable
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Data from 2006 Census of Agriculture.

estimates may be an upper bound on the effect of regulation. Perhaps some of the obser-

vations reporting 145 hectares truly have 150. Intuition suggests that such manipulation

would lead to an overestimate of the effect of regulation. The growers most likely to strate-

gically underreport their area are the growers with the highest costs of complying with the

regulation and, consequently, the least likely to comply. Since manipulation would remove

from the “treatment” group the establishments that are least likely to comply, manipulation

would introduce an upward bias into the RD estimate.

Bandwidth selection has important impacts on point estimation and inference. Gener-

ally speaking, a larger bandwidth increases the precision of a point estimate at the cost of

increasing bias. Recent work on RD estimation by Cattaneo and coauthors argues that esti-

mating this misspecification bias is critical for correct inference. Confidence intervals must

be recentered, to adjust for the bias, and scaled, to account for the variability introduced by

estimating the bias. Estimating the bias also necessitates selecting a bandwidth. Since each

bandwidth may be different on either side of the threshold, point estimation and inference

can use up to 4 bandwidths.

Because bandwidth selection is important, I report estimates based on systematic, ob-

jective procedures that produce bandwidths with desirable properties. To estimate the RD

parameter τ , I use the bandwidth selection procedure from Calonico et al. (2014) which

balances bias and variance to minimize MSE. To generate confidence intervals, I use the
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bandwidth selection procedure from Calonico et al. (2016), which minimizes coverage er-

ror. For point estimating and inference, I choose separate bandwidths on either side of the

threshold. I do so because the density of the running variable is decreasing rapidly around

the cutoff, resulting in a large number of observations below the threshold and few above.

Symmetric bandwidths would give a precise but biased estimate below the threshold and an

imprecise but relatively unbiased estimate above the threshold. Using separate bandwidths

ensures that estimates above and below the threshold optimally balance bias and variance.

The regulation is unable to explain mechanization under conservative assumptions and

a range of bandwidths. Figure 16 shows the point estimates with confidence intervals for a

range of symmetric bandwidths, including manually selected and MSE-optimal bandwidths.

I show symmetric bandwidths here for ease of exposition and because they yield larger

point estimates and wider confidence intervals. Since the evidence overall argues against

a large effect for the regulation, I take these estimates as conservative. No point estimate

is larger than 10 percentage points in absolute value and the point estimates tend to zero

as the bandwidth increases. None of the 95 percent confidence intervals exclude zero. The

confidence intervals do exclude a decrease of more than 30 percentage points in manual

harvesting, an increase of more than 30 percentage points in manual and mechanical, and an

increase of more than 20 percentage points in mechanical harvesting. Recall that, by 2014,

virtually all harvesting was done mechanically. To account for this change, the regulation

would have to reduce manual harvesting by roughly 65 percentage points, with corresponding

changes in the other outcomes
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Figure 15: Histogram of Establishment Area (rounded to nearest hectare)
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Data from 2006 Census of Agriculture. Disclosure rules prevent me from displaying bins with less than 10

observations. This level is marked on the graph. The true value for missing bins may be anywhere below

the line.

51



Figure 16: Point Estimates and CIs at Various Symmetric Bandwidths

(a) Manual only (b) Manual and mechanical

(c) Mechanical only

Data from 2006 Agricultural Census. Point estimate from local polynomial of degree 1. Bias correction from local polynomial of degree 2. Variance
estimated using nearest neighbor method clustered by municipality. There are multiple point estimates at each manually selected bandwidth h; these
correspond to different bandwidths b used to generate robust bias-corrected confidence intervals. The bias-correction bandwidth b must be at least as
large as the point-estimate bandwidth h. For each symmetric h, I estimate confidence intervals using h ≤ b ∈ {25, 50, 75, 100, 125, 150} and display
the widest.

52



Table 3: The Effect of Regulation on Harvesting Techniques (RD)

1(Manual) 1(Both) 1(Mechanical)

τ̂ -0.041 0.013 0.025
[-0.139; 0.047] [-0.068; 0.099] [-0.035; 0.093]

h− 75 87 78
h+ 755 697 1,270
N 14,795 14,795 14,795
N− 1,863 2,375 2,070
N+ 2,402 2,348 2,594

Point estimate from local polynomial of degree 1. Bias correction from local polynomial of degree 2. Variance

estimated using nearest neighbor method clustered by municipality. Reported bandwidths h selected to

generate the MSE optimal point estimates τ̂ . The CER optimal CIs use somewhat smaller bandwidths.

Assignment variable is Establishment Area.

A.3.2 The Full Set of Binary Outcomes

The 2006 Census of Agriculture asks respondents to report whether they use manual harvest-

ing only, mechanical harvesting only, or both. This is the only direct question on harvesting

practices. I convert this question into three indicator variables: 1(Manual), 1(Mechanical),

and 1(Both). For brevity, Section 2.3.2 presents the results of estimation for only the first of

those three indicator variables. In Table 3 and Figure 17, I provide the results for all three.

Estimation procedures are the same as described in Section 2.3.2.
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Figure 17: Binned Scatter Plots and Local Linear Estimates
0

.1
.2

.3
.4

.5
.6

.7
.8

.9
1

M
a
n
u
a

l 
O

n
ly

 (
F

ra
c
. 

o
f 

E
s
ta

b
lis

h
m

e
n

ts
)

0 50 100 150 200 250 300
Establishment Area (ha)

Source: 2006 Census of Agriculture.

(a) Manual only

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
M

a
n
. 
a

n
d

 M
e

c
h

. 
(F

ra
c
. 

o
f 

E
s
ta

b
lis

h
m

e
n

ts
)

0 50 100 150 200 250 300
Establishment Area (ha)

Source: 2006 Census of Agriculture.

(b) Manual and mechanical
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Data from 2006 Agricultural Census. Local linear estimates are plotted for x ∈ [150 − h−,min{300, 150 + h+}]. Bin sizes set to mimic the variance
of the underlying data (see Calonico et al. (2015)).
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A.3.3 Continuously-varying Inputs as Outcome Variables

If growers were shifting large amounts of area from manual to mechanical harvesting, we

would expect to see similarly large changes in a variety of inputs that are measured by

the Census of Agriculture. Repeating the estimation procedure from Section 2.3.2, I con-

sider three labor-related inputs (days paid to temporary workers, the number of temporary

workers, and the total number of workers) and five machine-related inputs (expenditure on

contracting services, fuel expenditure, the number of harvesting machines, machine rental

expenditure, the value of all vehicles). Figures 18 and 19 show binned scatterplots of the

data along with regression lines. In Table 4, I present estimates from the same regression

discontinuity procedure as above to see if regulated growers used different inputs than their

unregulated counterparts. The estimates are noisy so, in general, the confidence intervals

do not exclude large effects of regulation. However, only one of the point estimates are

statistically significant and some have counterintuitive signs. The number of employees is

higher among regulated establishments, and significant at the 5 percent level, while fuel

expenditure and the number of harvesting machines is lower. Finally, the graphs provide no

visual evidence of input changes at or near the threshold.
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Figure 18: Binned Scatter Plots and Local Linear Estimates for Manual Harvesting Inputs
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Data from 2006 Agricultural Census. Local linear estimates are plotted for x ∈ [150 − h−,min{300, 150 + h+}]. Bin sizes set to mimic the variance
of the underlying data (see Calonico et al. (2015)).
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Figure 19: Binned Scatter Plots and Local Linear Estimates for Mechanical Harvesting Inputs
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(a) Contracting Expenditure
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(b) Fuel Expenditure
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(c) Count of Harvesting Machines

(d) Value of Vehicles
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(e) Machine Rental Expenditure
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Data from 2006 Agricultural Census. Local linear estimates are plotted for x ∈ [150 − h−,min{300, 150 + h+}]. Bin sizes set to mimic the variance
of the underlying data (see Calonico et al. (2015)).
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Table 4: The Effect of Regulation on Input Use (RD)

Input τ̂ 95% CI Ȳ h− h+ N− N+

Temp. days paid 146 [-167;
305]

197 51 1,214 1,047 2,590

Temp. employ. 7.25 [-2.03;
15.7]

3.6 43 443 869 2,097

Tot. employ. 7.77 [1.23;
21]

5.22 34 340 707 1,946

Cont. Exp. 2.63 [-7.09;
13.9]

14.9 45 466 906 2,139

Fuel Exp. -10.3 [-12.7;
8.9]

. 67 57 978 429

Harvesters -.00976 [-.149;
.0911]

.118 51 392 1,040 2,031

Mach. Rent Exp. 506 [-2,827;
2,396]

491 66 269 1,555 1,767

Val. Vehicles 10.7 [-63.9;
172]

132 14 556 235 2,239
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A.4 Difference-in-Difference Estimates Using the Size Threshold

The area threshold in the São Paulo regulation also enables me to estimate the effect of

regulation via difference-in-differences. Recall that São Paulo was the only regulated state

at the time of the 2006 Census of Agriculture and that establishments below 150 hectares were

exempted from the regulation. I compare the difference between São Paulo establishments

above and below the 150 hectare threshold to the same difference among non-São Paulo

establishments. Specifically, I estimate:

Yi = β0 + β11(Ti > 150 ha) + β21(Statei = SP)

+ β3
[
1(Ti > 150 ha)× 1(Statei = SP)

]
+ εi (23)

where β3 is the effect of the regulation. The unit of observation is an agricultural estab-

lishment, indexed by i. The outcome Yi may be one of three variables: indicators for i)

establishments that use manual harvesting only, ii) establishments that use mechanical har-

vesting only, or iii) establishments that use both. In the reported specifications, I add state

fixed effects and a polynomial in area.

Note that this identification strategy yields a different parameter than the RD strategy

in Section 2.3.2 even though they both use the same 150 hectare threshold. The difference-

in-differences estimate can be interpreted as an average treatment effect on the treated so,

in principle, it may be more sensitive to changes away from 150 hectare threshold (see, e.g.,

Athey and Imbens (2006)). That said, most establishments are near or below the threshold so

this procedure may also fail to detect an effect on the small number of large establishments.

The estimates, shown in Tables 5, 6, and 7, argue that regulation encouraged growers

to move towards mechanical harvesting. The estimates of β3 indicate the average effect of

regulation on harvesting practices for regulation establishments. Regulated establishments

are about 10 percentage points less likely to use manually only. Regulated establishments

are 3 percentage points more likely to use mechanical only and 7 percentage points more

likely to use both techniques. The estimated effect of the regulation is significant in all

specifications.

While these effects seem large compared to the means, they are within the confidence

intervals of the RD estimates in Section 2.3.2 and they are small compared to the intended

effect of the regulation and the eventual outcome of complete mechanization. Recall that,

above the threshold, more than 60 percent of establishments report manual harvesting only.

According to the regulation, none of them should rely exclusively on manual harvesting.

Moreover, establishments over 150 hectares are almost completely mechanized by 2014. If

the regulation causes 10 percent of establishments to use some mechanized harvesting, then
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Table 5: Likelihood of Harvesting Only Manually

(1) (2) (3) (4)

Area > 150ha (β1) 0.084*** 0.098*** -0.044 -0.044***
0.020 0.030 0.037 0.010

São Paulo (β2) -0.188 -0.078 -0.090 -0.090***
0.021 0.061 0.063 0.005

Regulated (β3) -0.104*** -0.134*** -0.159*** -0.159***
0.024 0.041 0.041 0.013

Ȳ 0.781 0.781 0.781 0.781
σY 0.413 0.413 0.413 0.413
Clust. SE Y Y Y
Area poly Y Y
State FE Y
N 30,423 30,423 30,423 30,423

Agricultural establishments are the unit of observation. Removed observations in the top and bottom

1% by area. The outcome variable is an indicator for Harvesting Only Manually. Assignment variable is

Establishment Area. In the indicated columns, SE estimates are clustered by county.

Table 6: Likelihood of Harvesting Only Mechanically

(1) (2) (3) (4)

Area > 150ha (β1) -0.019** -0.021** 0.019 0.019***
0.009 0.009 0.014 0.006

São Paulo (β2) 0.063 0.043** 0.047*** 0.047***
0.014 0.017 0.018 0.003

Regulated (β3) 0.030* 0.034* 0.040** 0.040***
0.016 0.018 0.018 0.008

Ȳ 0.067 0.067 0.067 0.067
σY 0.249 0.249 0.249 0.249
Clust. SE Y Y Y
Area poly Y Y
State FE Y
N 30,423 30,423 30,423 30,423

Agricultural establishments are the unit of observation. Removed observations in the top and bottom 1%

by area. The outcome variable is an indicator for Harvesting Only Mechanically. Assignment variable is

Establishment Area. In the indicated columns, SE estimates are clustered by county.
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Table 7: Likelihood of Harvesting Manually and Mechanically

(1) (2) (3) (4)

Area > 150ha (β1) -0.064*** -0.077*** 0.025 0.025***
0.016 0.025 0.029 0.008

São Paulo (β2) 0.125 0.035 0.042 0.042***
0.015 0.050 0.051 0.004

Regulated (β3) 0.074*** 0.100*** 0.119*** 0.119***
0.019 0.032 0.032 0.011

Ȳ 0.152 0.152 0.152 0.152
σY 0.359 0.359 0.359 0.359
Clust. SE Y Y Y
Area poly Y Y
State FE Y
N 30,423 30,423 30,423 30,423

Agricultural establishments are the unit of observation. Removed observations in the top and bottom 1% by

area. The outcome variable is an indicator for Harvesting Manually and Mechanically. Assignment variable

is Establishment Area. In the indicated columns, SE estimates are clustered by county.

the regulation is certainly insufficient to explain the change in harvesting techniques.
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